JOHANN GOTTLOBB
LEIDENFROST
M.D. and
A Tract About Some
Qualities of Common Water.
Duisburg on Rhine
At
the Expense of Herman Ovenius, Universal Booksellers, 1756.
A Tract About
Some Qualities of Common Water
By
Johann Gottlobb
Leidenfrost
Here translated
into English for the first time
By Carolyn S.E. Wares from the
1756 Latin edition
Published at
Herman Ovenius.
Copyright, 1964, by Carolyn S.
E. Wares.
Copyright,2006,
Carolyn Sue Embach,All Rights Reserved.
To the most illustrious Royal
Academy of Scientists of Berlin.
John. G. Leidenfrost offers his reverence and
wishes you health.
Your
academy of scientists is something like the sea, which while
it is fed by the
You, therefore, most illustrious
and learned men, if I dedicate these sparse pages to you, receive them with
benevolence. Inflame and excite zeal in
me so that having something better, I will succeed, having in mind the
assurances of my betters.
2.
I pray to God that he might wish the king health, and allow
him to be enjoyed by the world for a long time with his incomparable
donation. And God save your most
splendid Academy for the good of the country, and in kindness liberally bestow
benefits of life and health upon your fortunes.
Written at
A
Tract Concerning Some Qualities of Common Water.
It is not my intention to set down commentaries about water or to repeat that which has been observed by our predecessors in this admirable body unless it is necessary to summarize, so they might be strengthened or amended through my observations. I shall write that which I have not read so far observed by others. If nevertheless those things have now been observed by others, I beg pardon for my ignorance so that they might surrender their readers (willingly). Nor do I fear on that account that my enquiries will be despised, because they are unimportant, obvious to anyone, born without great preparation, and easy in imitation. Truth holds a work neither in a bag nor under a cover. I was persuaded that no experiments in physics are better at the moment than those which are begun in the more simple bodies, such as common water. For often things in composition are so complicated that it is difficult to draw out any certain and faithful rules from them. For something may easily lie hidden in complicated things, because we may overlook things with which oversight the whole demonstration is useless. In more simple things error is more simple, and
easily extracted. Actually, whoever chooses to examine for himself the general rules of motion should also contemplate the design of animals, moved with very intricate motions. How difficult the way becomes and curved the path, distasteful because of its so many errors! Thus, whoever wishes to investigate the general qualities of material bodies (so far not enough observed) can not measure enough the simple phenomena obvious in the most simple bodies when these are put together outside of the others. Through themselves alone, or by such ones elsewhere, even in a quite simple body, they are moved changed, effected. Whoever has become acquainted with these phenomena is he who more securely plots his path. Not offended by many halts, he proceeds to the limit when he works in well ordered things. The wise man seems to move the admiration rather than to truly benefit the sciences.
II
Moreover, no life can be begun or continued in these lands without water. No matter who may seek a contrary example, he is frustrated. And Plutarch of Chaeronea says, as he shows in an elegant investigation, that water as well as fire exhibits its use to men. He says that alibantas ? are called dead because they alone are freed from all liquid and
humidity. The reason for this is that all mankind seems eager for knowledge of water. For in finding, separating, collecting and dispensing it a great part of the public as well as private economy is occupied. The theologians have a very important object in water . Hardly any other search is more important and illustrious than concerning water, in natural as well as civic opinion.
3.
Mathematics has tried to measure the motion, force and equilibrium of water in statics and hydrostatics. And before the end of the measurement it finds itself wearied by this different and difficult thing. Who can count in how many volumes about medicine all the medical authors who wrote enthusiastically about the use and abuse of simple and mixed water? Physics explains about the origin, the causes and the effects of water with much strength and excellence – in respect to those changes, at least, about which one can or ought to speak. Chemistry, since Physics outlines its special part (which proceeds from the material beginnings of bodies), examines the substance alone and when mixed, with the consideration of the motion of the whole structure or the motion of progress. The chemist says he also teaches a little about the matter, generation, composition, change and corruption of water, and of these few with not enough certainty. For little is catalogued from all of these simple assertions about simple water which are treated as truths in physics and chemistry. I am trying to augment this catalogue with one or another assertion. I will not dispense these reckonings except thriftily for this reason. And those which are uncertain I will always derive from certain ones. Perhaps nevertheless, sometimes, if besides one method there is a certain other somewhat related, I will approach the thing less pertaining to appearance, because I rely upon the obliged reader of the following matter about to be presented.
III
Without doubt, all antiquity saw water to be a fluid, a vapour, something cold, something with some heat, fever, ebullience, in which changed vapours were made volatile. The same increases some in ice, dissolves certain salts, abandons solid earth, and is repelled strongly by fats. Similar phenomena to these most true ones are very common. So, in truth, these only contact the senses. Nor can they acquire or benefit or aid understanding unless in separate, single phenomena. And due to the reason of circumstances following the law of fixations certain measures are sought. Thus it is certain that in this question I propose to include nothing unless very little from former authors concerning physical things nor the hypotheses from the lacking lips of all men.
IV
The simplicity of water is said to be the first thing observed about it by a philosopher. So, I will say no more about Thales of Milesia, who explained more from ingenuity than from observation that water as a single principle is the element of all bodies. Nor will I discuss the Democritan school, which in this business of elements asserts with no greater faith that fire alone must be joined with water. It is clear that great Aristotle, who was seen to have demonstrated first to himself the necessity of the four elements, diligently
with thought out discussions and the observations and opinions of his ancestors, did not refuse a favourable place to water among the most simple bodies. And the Aristotelian hypothesis of four elements, although I might not wish to defend this for a truth, nevertheless is an elegant hypothesis so near to truth, so responsive to several phenomena that I wonder in what manner the more recent age of man can accustom itself mutually to this secret remainder and much more uncertain creation of physical elements. For it is necessary that all of physics has two hypotheses. First, that it is full of explanation from the posited principles of phenomena. Finally, that these principles may exist in reality.
4.
Nor are they the entity of reason, predicted for the pleasure of fiction with the hidden qualities of all arrangements. Which pair being required, certainly it is allowed to say this in passing: neither in the three repeated principles of chemistry, nor in the three Cartesian notions are they found. For while I say nothing about monads, the doctrine of which pertains more to metaphysics than to the knowledge of natural bodies, the principles are filled with nearly nothing of the salt, sulphur and mercury of chemists actually, unless you use earth and water as principles reduced in that philosophy. Because salt is understood even in the most simple sense not to be plain, but made from both earth and water. And fire is a mixed body and for that reason it is seen to be glorified like the first element in vain. Truly the Cartesian triad talks wrongly about the twisting of particles, primarily because none can be shown to the sense, nor by any way of reality can there existence be shown. Rather by the luxury of notion it is arranged by chance. Finally, it happens so with them because the good aether labours with all phenomena to fulfill. It occurs in the affairs of the heathen god Jove, which troublesome events most agreeable Lucianus also charmingly derides in his two accusations and here and there elsewhere.
V
When, therefore, Aristotle claimed that the simplicity of water be selected, he does not wish (nevertheless) for it to be had from a certain origin and immutability. Rather, he believed in four elements, which he set forth in the order of the overthrown, and from these two joined with each other, from the vanishing form of the one the third ought always to be able to be born. He concludes the idea of motions from general laws and from the primary qualitative observations of bodies, as they say.
For Aristotle says throughout that he will not have these
four elements through the prime material, but through primary and very simple modifications. See De generatione et
corruptione. Granted – I might
again not wish to make or defend my opinion about the axiom. I marvel nevertheless at the shrewd wise
hypotheses, the beauty of which the present day is hardly aware, from which the
Greek philosophy remains to be read. For
he first supposed that the most perfect motion of all is circular and from the circular motion there followed
to be no heavy bodies, no light
ones. That coincides enough with a
certain teaching of those great men Huygens and
from the centre or middle. He supposes secondly the condition of nature by which bodies are thus dispersed in these two motions. Some bodies are always heavy, i.e., earth; some always light, i.e., fire. Of, if, because of the same thing, bodies attract themselves, certain ones always flee themselves. And primarily for the reason that certain bodies always strive to the centre of the earth, certain ones always try to draw away from it. All more recent physics considers to what extent the matter of the body in which it occurs might be shown through chemical experiments, and in turn, this about particular motions: in what manner they attract themselves, again how they flee themselves. Such about the pure earth is most certain, that as long as the earth is solid and not conveyed beneath with other bodies, it is always fixed, that is, always heavy. Always it strives towards the centre of the earth, so chemical experiments above all turn out. However, fire is pure and
5.
does not adhere in other heavy bodies as if in prison, always volatile that is, light and
centrifugal, not drawn to the centre of the earth. Even if Boyle denies it in his book on the ponderability of flame. This book nevertheless does not distinguish between pure fire and the composition of flame. Nor did it regard the weight for airy bodies insinuated with fire. However Herman Boerhaave in the work of an immortal chemist restores the absolute lightness of pure fire with greatly similar arguments.*
* Obviously, Boerhaave teaches that a great enough mass of iron or copper greatly heated through fire, weighed on two scales, is not a bit more heavy than the same mass returning slowly to coolness. He describes an experiment made by himself on a parallelepiped of five and a half pounds of iron, and also a similar mass of copper. I know that several erudite men, especially the illustrious Musschenbroek (Princ. Phys. & 787) have opposed the conclusions which B. Boerhave prepares from these experiences. This is because of hydrostatic reasons, since molten iron clearly occupies a greater mass than when cooled, although it is specifically lighter. The greater part experiences support from the air in which it is weighed. Hydrostatics take these reasons into account. But the weight of the present fiery parts cannot be known through this experiment because the iron acquires greater weight from the fire than does the air because of the greater mass of the iron; moreover, for these same reasons the heated iron ought to be even lighter, and to rise on the scales unless it is pressed down by the weight of the acquired fire. I must disagree, in this difficult matter, with the calculations of the distinguished Musschenbroek nevertheless noting the reverence due to such a meritorious man.
Without contradicting the unswerving desire of acquiring truth, I must warn that when, in this computation, mathematical method is applied, all that immediately disappears. For as assuming the data which that illustrious man assumes or which he certainly does not dispute:
I. A cubic finger of rain water equals 311 grains (Musschenbroek loc. cit., & 704). The specific gravity of such water is to the specific gravity of iron as 1000 to 7645 (same place & 703). When 1000:7645 = 311:2377 595/1000 = fingers. That is one cubic finger of iron weighs 2377 grains. Therefore the weight of the iron mass weighed by Boerhaave was 5 pounds and 8/12 (or 8 ounces), or 88 ounces, that is 42,240 grains. Then the mass
of it was 2377:42,240 = 1:17 1931/2377, that is the Boerhaavian mass of iron occupied 17 1931/2377 cubic fingers in a cool place.
II. Therefore when we investigate the enlarged mass of this parallelepiped that occupies 17 1931/2377 cubic fingers in a cool place, it is important to know what fractions have been conveniently omitted in the calculations. White hot iron is expanded through 1/60 of its own length (Boerhaave Chym. P243 f.) . So, for example if 17 cubic fingers in a cool place (errors taken out) equals a3 , the same mass in a heated place, will be, for example, expanded in three dimensions through 1/60 of its own length equal to (a+a/60)3 = a3 + 3a3/60 + 3a3 /3600 + a3 /216000 = 17 + 51/60 + 51/3600 + 17/216000, it is plain that this is less than the Boerhaavian mass of heated iron of 18 equal cubic fingers.
III. Consequently the entire increased mass did not make one cubic finger in the Boerhaavian mass of iron. And also not even one finger of air is displaced by this
6.
expansion, so the support given by the air to the heated iron is less than that of 1 finger of air. Now the weight
of one finger of air of medium warmth equals ¼ grain. By which means the resistance of the air against the Boerhaavian heated iron was increased by less than ¼ grain, which, because it is of so little weight, can not be detected on the scales, from which the several pounds hang.
IV. It is truly undetectable because the atmosphere of the air in that place where the burning iron is, is rarefied to the point of a vacuum. Thus it offers little support. Nor is this changed because the hotter air decreases in weight and acquire greater elasticity, and, with this elasticity, can better support. For this elasticity that is present in such heat emitted from the white-hot iron in fiery rays does not support the weight of the iron. Moreover it is questionable whether the elastic air is really so hot.
V. Therefore it follows from this demonstration (see III), that the weight of fiery parts in Boerhaavian iron, if it was sensible, is not sensible beyond 1/ 4 grain. And from the demonstration (see IV) it follows that the sensible weight of it was nothing.
VI. However through Boyle’s observations, the increases of calxes and metals hung near a fire, and through those which were repeated in the Academie Royale Parisien and those which most illustrious Musschenbroek added to (same place following) the weight of fire, insinuated and fixed in white hot metallic bodies ought to enlarge and give a great increase in those weighty bodies. By which means if part of the fixed fiery matter gave a great weight, the weight of the much larger matter ought to be observed, if truly fire is heavy.
VII. There are those who think this controversy to be of small moment, and has little to add concerning physical things, but they do not notice that the absolute levity of fire could be demonstrated. Also universally a theorem may be a false physical example, namely that: the weights of specific masses and the masses of bodies with specific weights are proportional. For heated iron has more mass than cool iron, nevertheless it does not have more of specific gravity. For the rule cited a
little before this, assuredly is not completely valid in chemical experiments, particularly in some cases and especially in effervescent solutions. The applicability of common hydrostatic laws to the specific gravity of bodies, merits study concerning its serious limitations.
VIII. So therefore concerning fire, whatever fire is, I am certain that it is not changed into other kinds of bodies. But I have devised another experiment to determine truly whether it is heavy or light. In fact it seems to me that this quarrel can be settled by this method. If we can but ask what other force diverted by the force of gravity (for example, a horizontal projection through some spring in a heated body, and in the same not heated it impresses equal motion, and equal effect from that motion is produced in each case. For when we intend to explore the weight of fire through its gravity, some excuse always remains but in truth the weight it supports is so little and small that it escapes our senses. In this view I had a strong spring to be made for me 2 ½ feet long, from good steel, which on one end was shaped into the form of a shell, in which I could place an iron globe. On the other end of the spring were iron hooks firmly fixed on the wooden wall, so that if the spring was stretched, it was parallel in this way to the wall, and perpendicular to the horizon. If, in truth, that spring returns itself,
7.
stretching with a resolute force, it will recede from the wall in the lower part, and the iron globe placed on the lower end will project by itself through a horizontal line, which globe finally through
a parabolic line tends to the earth. With this instrument completed, so that I may obtain use from it, I reason thus:
(a) Equal force produces equal motion, through which from the same spring stretched in that same position, the same iron globe, if all is rightly set up, through equal space, and through equal time is always projected.
(b) If therefore from the same and equal force, truly on that same spring diverse bodies of the same magnitude but which have not the same mass, for example iron globes and wooden globes, are projected, what then is the greater swiftness in the body? The one which has truly the less mass in the globe ( for example, in a wooden one) and the lesser swiftness in the body which has the greater mass, as in the iron globe.
(c) Because therefore the speed is determined through the space divided into time, it follows that in these two globes, if the times can be put equal, the speeds will be proportional to the spaces, so that (see (b)) the spaces are reciprocally as the masses.
(d) If I suppose fire to be a body, nor still to gravitate toward the centre of the earth, but by the reason of the earth to be an absolutely light body, then in following that the iron globe heated is not heavier than the same unheated, and still in the heated globe there is more mass than in a cool one, because fire entered into it.
(e) By which means from this hypothesis (d) if the heated iron globe and the same not heated fall from the same height (in a non-resisting medium), they approach the earth in the same amount of time.
(f) If either one is projected horizontally by the same force from the same height, each will describe a parabola, then by two forces it is urged, one projecting it horizontally, the other perpendicularly, in truth gravitating to the centre of the earth.
(g) And when weight in two things is supposed equal, they are divided one from the other in equal parabolas and in equal time, i. e. either globe approaches the surface of the earth in the same space of time, and that the first globe touched the surface of the earth, it quieted immediately (unless perhaps new motion must be produced by the repercussion). It follows in both globes, if they are equally heavy, in these circumstances equal times of motion.
(h) Then in truth in the heated globe in which is supposed the greater mass engrossed from the fire than in the same globe cooled (d) , the times of motion are equal (g) and the force projecting equally (a plus b) towards the horizon, it follows that the spaces are proportional to the masses reciprocally (c) ; and as far as the heated globe in a horizontal line because a greater mass travels through less space; in truth an iron globe not heated travels the same space in the same line better. By which reason the heated globe falls nearer into the mud from the point of projection, the same globe cold falls farther away. Also fewer semi-ordinates were in the parabolas which the heated globe described, than in those which the cold globe described, so to these same departures they are applied.
(i) And because (in a non-resisting medium) if the times are equal, and
the same projecting force, the spaces and masses are reciprocal (h plus c) it follows from the difference of the semi-ordinates that it is the same thing, from the distance of the points in which these globes hit the earth, from the wall from which they were projected,
8.
that from the difference of semi-ordinates in these two parabolas one can know the difference of masses.
(k) So that these can be repeated rightly, it is necessary that all of the movements be in a non-resisting medium. For the heated ball, because the mass only increases in greatness, suffers the greatest resistance, when projected in the air than does the same one cold, which is of less mass and greatness. Therefore the heated globe not only because of its greater moving mass, but also because of its greater size, is resisted more, and moves a distance that is less than that moved by the cold one by the inverse ratio of its mass, and by the inverse ratio of increasing size.
(l) However, the resistance of the air for any body is as the ratio of surfaces. Also if we assume two globes with perfect sphericity they would resist the air by ratio of their squared diameters. Iron is known to be expanded by fire, as I have assumed through 1/60 of its length. For this reason if the diameter of the cold globe is made equal to 60, the diameter of the same globe heated will be equal to 61, the squared diameter of the cold one equals 3600, and in the heated one it equals 3721. For which reason the resistance of air against a cold iron globe, and the resistance of the same air against a heated iron globe, projected by the same force,
are in the proportion of 3600 to 3721. because of this air resistance the heated globe falls to the earth nearer to the line of projection than does the cold one, in the relation of 3600 to 3721. the semi-ordinates of the parabolas which each globe describes, if they are referred to equal starts, are to each other as 3600 to 3721 just from the resistance of the air.
(m) If therefore this is tried, with the spring apparatus described, and if the heated globe falls to the ground closer to the line of projection, then this distance is to the distance of the cold one as 3721 to 3600, then one must credit that additional distance not to
the air’s resistance, but more to the increase of mass from the inducted fire. For which reason the quantity of the mass of fire can be determined from this difference.
IX. This was my reasoning, before I tried the experiments. Finally after trying them with several changes, I performed the experiments in the same manner. I observed several proportions with variations depending on whether there was in general more or less quantity of fire in the globes, whether extending in that type of spring, or other circumstances. Nevertheless, always and constantly, if the spring had been stretched in the right way, the heated globe fell into the sand closer to the wall than the same one or an equal cold globe. For which reason through these former observations, it is established that a copious mass of fire hides in a heated iron globe and can be compared to a weight greater than a few grains, although
in all this heated mass no gravitation toward the centre of the earth is seen. I confess however to have used several globes, of diverse magnitudes, so that I might take experiments of diversity. I cease however to speak more about this because I reserve it for another occasion. However this is my method of determined whether fire through the reason of its mass is also heavy proportionally, this I want to make public, so that if something is changed in it, I can find out from learned men. Before I conclude I will set forth something from the experiments by this method.
Whence it stands without right and deeply unworthy that from the absolute lightness of these certain bodies, by the more recent the old philosophy is attacked. Aristotle
9.
supposes in the third place, between earth and fire, two middle elements, water and air, since indifferently having weight and levity, so nevertheless as air for lightness or volatile
centrifugal, therefore water inclines more to a centripetal position; in which I suppose not many an author to have been deceived, very true it is, that about water no one contradicts, that it is something heavy, something very volatile. Thus also of air Mayovius and Hales assert the double state: now fixed, now volatile, who are excellent men to follow. The Stagirite supposes four primary motions, that is besides the heavy and the light, the four to be principles and cardinal qualities of elements, from which all sensible effects of the bodies remaining depend: namely, calorem (heat), cold, humidity, and
dryness. So if it pleases you to hear the whole thing expressed in today’s terms which bodies are elastic, which one non-elastic, which ones fluid, which ones firm. For on! With dishonor they explain Aristotle, and they show the peripatetic physics to be studied in his lectures, or interpreted or mocked, who under the term of calor (that sensible quality of a body with which our senses are affected with heat, and which heat is in our nerves only and not in the body) is with a warning. For they think understood by Aristotle caloris a force similar to congregation, and dissimilar to segregation; and in like manner cold is said by all without discrimination to congregate by itself. These two qualities I claim expressed today by apter terms of mutual attraction or flight of the particles. We understand all this theory under the very general word of elasticity. But
truly limitations do not now permit us to explain these and other things according to the true thought of Aristotle, and it suffices to indicate that Aristotle attributes a non-elastic and firm state to the earth, as essential attributes, or cold and dryness. In which I say that neither the errors of the philosopher nor the more recent experiments which physics and chemistry call to witness unite common opinion. Of the five elements Aristotle supposes, two have no common quality, to always to be able to be joined and to be mixed, thus so that as one form degrades the other, a certain new thing emerges; this contradicts neither reason nor experiment in any way. And from these five supposed premises the most ingenious author concludes that the changes in themselves are elements, and from the two joined always the third to be born, just as he asserts no less that all other bodies are composed from the four, and he further argued this in the best form of syllogism, from these premises. There are not possible more than four changes of elements, however innumerable the remaining bodies, also that four such very simple bodies are given, and innumerable mixed ones in whatever way it might be, his method following of testing the thing will be clear, which nevertheless ought to be explained at least by me. But I will only present those which concern water. He shows therefore that water is born if earth and air are intimately mixed. And water can be resolved into earth and air again. Clearly the earth, with its dry character, and air with its caloric character, if concreted form a cold and humid body, which qualities are suitable for water alone. In truth it is reasonable to join fire with water to generate air, or earth, for from water, with a humid character, and fire with a caloric character, earth is made. On the contrary, water with a cold character and fire with a dry character take form in air. For concerning those changes not pertaining to water, space does not permit me to comment.
VI.
This is that renowned argument of Aristotle by which he proposes to change water through fire into earth by force sometimes, and sometimes into air. In
10.
which nevertheless also when the argument is best, he is unable to quieten the extensive physical knowledge unless he attacks an experimental trial. Undoubtedly nature does not love celibacy, for it connects the soul of the body, thus it does not value alone the syllogisms of the mind. Which senses are not filled with evidence, nevertheless these notes are suitable, because this Aristotelian hypothesis, born from good reasoning, to this great day applied to the problems of physics, that can be so rightly resolved and demonstrated through experiment. He unites and renews all of the physical teachings, he knows, if we do not know, the principles of bodies in their conversions. Wherefore briefly we will consider those sensible ones about the nature of water, that, as the peripatetic hypothesis permits, either I correct or corroborate from them.
VII.
And because the first conversion of which Aristotle treats is that of water into air, it was probably always frequent. For water with warmth is dispersed into breath wholly like the air, very elastic, and with an impetus of particles fleeing from themselves to burst forth from the surrounding space, which antiquity saw in the ancient aeolipile. For from this they have explained the nature and origins of winds in philosophy, as Vitruvius teaches (Book1,chapter VI) where wind, he says, is flowing air with fluctuations of redundant motion. It is born when heat offends the dampness, and the impetus of heat expresses a force of fixed spirit. However to be sure it is allowed in aeolipilic air to look, and express truth from the wide thoughts of the air, by excellent artificial inventions. For the aeolipiles are made empty of air, they push in a very narrow point, in which the waters are poured and they are placed on the fire, and before they heat they do not take in any breath; however as they become heated, they show a strong wind to the fire.
Thus it is allowed to know and to judge from this very brief and small display about the great and immense sky of winds and the reasons of nature. From these same causes now Aristotle explained the winds and motion of the earth long ago. And Cartesius (De meteor, discourse IV) from the same exposition of winds and breathing thought to clarify matters. However the great Wolfius (Tent. phys. Part 1, & 174), observes the breath emitted from the aeolipile and with a glass dish turned over the form of moist vapor adheres to it, and slowly truly in little water drops forms again, at the bottom. The spirit of wine from a similar aeolipile with the breath rushing out does not change its nature, so that this breath might grow warm to this and to all notations truly is windy? With similar experiments on the spirit of wine erupting through the orifice of an aeolipile and producing a salty fountain of fire, which he took from Hamel (Histoire Academie Royale Parisienne, p.189), whence the great Wolfius concludes that in this experiment the Aristotelian transformation is in no way demonstrated. Nevertheless with the permission of the illustrious author I conclude from his experiment on the collection of vapor in watery drops no other result than that not all water enclosed in the aeolipile will be changed into air, but part of it in truth remains water. For the experience on the spirit of wine has some peculiarity, about which I will make a comment later on. In general therefore it is certain by reason of the aeolipile, that water of great heat is converted into a wind similar to air, as Wolfius concludes (loc. cit.) but as to how truly it is air must be studied by other experiments.
11.
VIII.
For in the said experiment now he urges caution because not until the last century was it known, from the remarkable large machines of Magdeburg, published by Otto Guericke, and from his emendation by Boyle and of others, that in this very simple water there is true air within certain spaces of the water, which either through heat, or through reduced pressure of the external atmosphere is expanded, forms bubbles, and produces a motion of bubbling in the water . For this air is neither produced nor generated from fire, but rather existed before being expelled in the manner above. For boiling is able to be made without fire, for placing water in the receiving vessel of the pneumatic pump it boils after the atmosphere is exhausted (see the learned Musschenbroek Elem. Phys . & 733, and others here and there). In truth the same abundance and portion is certain to lurk in many stages in water, when the mass of the same water is able to boil for a very long time on the fire, nor is not all freed into the air even when deeply cooked. In the degree of heat which boiling requires, a very obstinate remnant of air is seen, so that not unless gently and as if mixed that sense drops. Wherefore it is certain that water deprived from air thirsts for its own kind again, and if it is given free access to it, even from the atmosphere drinks to satiety. For water exhausted of its air by a pump, and quickly placed in upside down vessels, takes in a discharged air bubble, so that its mass divides or spreads out in the ratio as the quantity of the other liquid is diminished, from the first observation of de la Hire (Academie Royals Parisienns, 1711), which was more wisely and clearly repeated ( see distinguished Musschenbroek loc.cit. ).
IX
This is certain that the expansion of water into breath possesses great forces and enjoys hardly measurable elasticity. As the vapor of small drops not only expels all existing air from a large glass or airy globe but a little after the globe can nearly entirely filled up with mercury. It can move also an immense weight, as the discovery of Papin (Act. Erud. Lips. 1690) and other teachers. For a calculation shows that drops of water, changed into wind, occupy a greater place by 14000 positions than before, and it can be extended even farther ( see worthy Musschenbroek loc. cit. 729) which despite this holding an enormous position can be easily cooled to the first mass. Whence it is clear that the vapor is elastic also, and in elasticity surpasses all known bodies. And perhaps it can show more, if a great deal of fire might be suitably allowed to be applied, as from that very brilliant observation that the illustrious Ellerus presents in his communication to the Academy Regna Berolinenci 1750. For he knows that when glassblowers form very large chemist’s vessels by blowing through an iron tube, the breath does not fail for such a mass of expansion. They are accustomed to replenish the mouth with water, and they blow it with the breath. For this water in such heat as of melted glass is converted into elastic vapors, nor does it return thereafter to the form of water.
X.
This is all the more curious because water itself, for however long it remains in the form of water, is lacking in all elasticity. Also Aristotle nearly admits, while the frigidity of water or a non-elastic state just as some primary quality he ascribes. Water, he says, is by no means soft or compressible. In fact a great part of it moves with the least compression, but opposes around, from the opinion of book 4, chapter 4. But even with the very celebrated Florentine experiment, where it is plain a metal globe or
12.
press filled with water and beat with a hammer does not sustain the pressure. Rather, it transmits wet drops of water through very small pores of the metal, beyond all doubt. For because Boyle very cleverly does not complete the experiment, it proves nothing. After which Boerhaave shows the causes of error and bad results in the Boyle experiment, in Elem.Chem., the chapter about water.
XI.
However the incomparable chemist, George Ernest Stahl, is opposed to this non-elastic state of water, ascribing hardly some to water but also the greatest elasticity to the whole. So that among the ideas of Stahl here and there are recounted these elastic qualities of water (see Cel. Juncker, Consp. Chem., Table 1, page 33) Whence therefore under this title of elasticity another quality close to it is misunderstood, because water is expanded through fire into elastic vapors similar to air. I do not see in what manner these might be said to be discovered by Stahl, for they were known before from Vitruvius. On the contrary, most certainly it can be referred to antediluvian knowledge and exists in many books of physics laid out from accurate Italian and English observations. And also undoubtedly in a joined example in which B. Stahl speculates (see preceding) about the bombardment in a place loaded with ashes of fire with water, about the same action in the fire ashes from the water particles diverted in the presentations in native mineral alkali etcetera, nor others they show, unless water in an elastic state is able to be resolved. However, of that same water, as long as it retains the watery form, they prove the elasticity at a minimum. Unless, however, I think and venerate the wisdom of Stahl, as it might be sought with knowledge in such glory of popular discovery, and rather shall I believe another of that same possibility in the elasticity of water known to have been discovered, as not enough is laid out in writing.
A more distinguished and more wholesome thing for the whole of physics was the discovery of worthy Amonton’s Law (Academie Royale Parisienne 1702). It is obvious that simple and pure water boils at a determinate degree of heat, which neither is increased by the amount of fire applied or longer continued, nor diminished by decreased: the notion of boiling is continued. For we have in this degree some fixed measure of heat, for the rule of which the heat of whatever kind of body is permitted to be measured. For surely it can be said how much from this one observation the light will have been kindled not only in general physics in making thermometers and scales, but afterwards in the determination of the degree of heat, in which plants thrive and animals are spawned. Then in the theories of fermentation and effervescence, but also how distinct ideas will be born from medicine in diverse measurable degrees of heat of diseased human bodies. So that accordingly Herman Boerhaave wishes to have this observation because most full, which is enlarged and promises use, through one from the first ones of this generation. And neither must the Fahrenheit correction be thought to detract from the value of his experiment. Rather it is corroborated and conveyed to great evidence of certitude, from which marvelous Fahrenheit sums up an account of how the diversity of the atmosphere’s weight changes a little more or less the warmth of boiling water. For we easily define this variation of the law from the Barometer. Nor is it any contradiction that, through the machine of Papin, lead and tin in the midst of waves can become liquid. When we consider compressed air in Papinian jars is given great elasticity by the action of most of the overlying atmosphere.
13.
XIII.
Water exposed to heat vanishes and slowly is taken away; therefore it diminishes the mass through evaporating. For changed into elastic vapors, these light beings ascend to a higher atmosphere – whence clouds and fogs. But in what manner it does is disputed diligently by philosophers. Especially the secret quest by many beings is aroused more considerably on the origins of fountains and streams from vapors and rains. My goal forbids me from thoroughly noting that which has been thought about these things by very learned men. The Leibnitz hypothesis, namely, exhaled water is changed into less full bubbles with air hot, elastic, and expanded, and from the imprisoned lesser part of the air through heaviness above a heavier atmosphere these are elevated and float in this, for a long time has been predominant so that it is believed by nearly all men, although it is shown with convincing arguments not to be a sufficient hypothesis by explaining phenomena. Therefore they have tried to correct that. They substitute a certain aether spirit for air in these bubbles, and join to it the duty of driving water above the atmosphere, which thought the illustrious Eller favors, loc .cit . and very learned Kratzenstein. Cohesion of water particles with assisting air the brilliant Hamberger calls it and he holds that the whole thing not unhappily is explained by the solution theory. It is necessary for water to be loosed from air as salt from water. Others defend the propulsion only of water drops from the fire toward the upper regions. All of these hypotheses are seen to have something of truth, and no matter who puts forth extraordinary or despised experiments of these causes. Nevertheless, so that truth might be manifest, after which I read through the most recent from these writings, it was evident that not very many experiments have been tried on this matter, nor enough variety of them so that from them anything can be concluded with safety. For the exhalation of water in a space empty of air, which I see for the understanding of the best cause of motion is denied by none, affirmed by others, we ought not to doubt anymore that water has been evaporated into that empty space. Most recently the learned Krafft has examined the matter with extreme care. In jars of the same width but of unequal depth, more evaporated from the deeper than from the shallower with the same degree of heat, according to many observations said to have been made by Derham. However the excellent expert Khun denies this in the translation of On the origin of fountains, &103. it is certain that heated water evaporates less than cold in certain circumstances. As common experience teaches daily a strong heat benefits evaporation in dry linen and in condensed solutions. Wherefore the degree of evaporation is not seen to follow the law of heat degree, therefore that law ought to be determined more accurately through experiment.
XIV.
Another part of the Aristotelian hypothesis is that certain water is changed by fire into fixed earth. This was exploded a long time ago. And the incomparable Boyle recalled and advocated the experimental test (see tr. On the origin of forms Exp IX)), in which another similar experiment is reviewed by Borrichius (De Herm. Sap., C.), where also the very learned Edmund Dickinson is challenged. However the incomparable Herman Boerhaave boldly contradicts all these. Again, the learned Eller in the chronicles of the Acad. Royale Berolinsi confirmed the Boyle experiment although by another
14.
method. I know how Helmont solid parts of plants and growths were made from water alone and which and for what purpose Woodward responded, and many men after him, but I decline to lower myself to touch upon this quarrel. I will show that the fixation of water in fire for different degrees of fire is different, nor does its volatility increase or decrease in equal measure with the degrees of fire. And I hope that if nothing else, it is a peaceful, simple, and new experiment of truth.
ON
THE FIXATION OF WATER IN DIVERSE FIRE
XV
1. An iron spoon
of any size, well polished within and free from rust and dirt, is heated over
glowing coals until it glows with light. To this glowing
spoon, removed from the coals. send through a
glass tube of suitable length, of which the other end finishes in a very narrow
capillary canal, one drop of very pure distilled water. However the water which
I have used was certainly as pure as can be made through distillation. It
dissolved whole nitrous crystals of mercury without color, nor did mercury precipitate
in any way, nor was it disturbed by alkalis. Moreover the water which I mostly
used runs into a protected pool, now and for 6 and some odd years. No
disturbance was noticed in all this time. Even with ordinary non-distilled
water one is allowed to assume a nearly similar event. In any case such a tube
as I have just described is right to use so that one drop always equal to
another falls from the small opening, nor does varying in the magnitude of
drops make a difference in the experiment. This drop which first fell upon the
glowing iron is divided into a few little globes, which nevertheless after a
little while are collected in one great globe again. At the instant when the
drop touches the glowing iron, it is spherical. It does not adhere to the
spoon, as water is accustomed to do, which touches colder iron. Nevertheless in
the first moment of contact the glowing iron around the drop is black, indeed
very black in a space which is greater, the brighter the iron, as if the matter
of light and fire from the glowing iron suddenly was snatched into the water.
2. If then the
spoon remains motionless, this water globule will lie
quiet and without any visible motion, without any bubbling, very clear like a crystalline globe, always spherical,
adhering nowhere to the spoon, but touching it in one point. However, although
motion is not visible in the pure drop, nevertheless it delights in a very
swift motion of turning, which is seen when a small colored speck, for example
some black carbon, adheres to the drop. For this is turned around the drop with
a wonderful velocity, and it shows the same sight as the drop of silver upon a
little tub, which as long as it is polluted with particles of litharge shows
its own gyration by a most rapid circular motion of these, until deeply
cleansed from these it emits most beautifully the customary splendor. For if
Astronomy concludes correctly from the motion of the spots of the sun alone
that gyration of the sun around the axis, it is permitted so also to Chemistry
to form a similar conclusion from similar phenomena. Moreover, however, this
drop only evaporates very slowly. For if you turn to a pendulum indicating
seconds with its oscillations, at least 34 or 35 seconds, that is it runs a
little over half a minute of an hour before the whole drop disappears. Which at
last exceedingly diminished so that it can hardly any more be seen, with an
audible crack, which with the ears one easily hears, it finishes its existence,
and in the spoon it leaves a small particle of earth.
15.
3. While these
things are done, the glowing spoon ceases to glow and becomes cooler. Therefore
as soon as the first drop disappears, send another drop similar to the first
through the same glass tube to that same spoon, which
with similar phenomena will disappear in 9 or 10
seconds. But there is this difference; this other drop in this case is divided
into more globules than the first. which return into
one globe with more difficulty, but they are moved from here to there and as if
dancing they produce a whistle with their motion in the spoon.
4. Meantime while
the iron is cooled more, after the second drop has evaporated, then let go a third,
which, with a great motion of globules greater certainly than can be called
boiling, it will disappear within the space of three seconds. I observed
nothing remaining of solid, earthy matter in the second and third drops, as
from the first drop unless there was a manifest impurity in the spoon.
5. If then you put
in the fourth drop with the same precautions, this is no longer rolled into a
globe, but adheres to the spoon and makes a damp spot in it and with a whistle
surges into a true motion of boiling, and thus foaming into vapors it will
depart very swiftly inside the space of one second or even swifter, and leaves
nothing which is in any way sensible of earth or of solid matter.
6. If after this
you send down successively the fifth, sixth, seventh, and more drops to the
same spoon now cooled enough so that it can be touched with the fingers with no
harm, it will be evident to the eyes that because the spoon is cooler, the drop
falling imparts a greater moist spot to the spoon, and adheres to it a longer
time before it is evaporated.
7. If in the place
of one drop you put in the spoon glowing well several drops,
for example six seven, eight, ten, it also makes a globe, but not perfect, the
top depressed, nevertheless very transparent. And not less than for one drop
slowly expiring without any boiling motion, thus so that some 10 drops stand
through two and more minutes in the fire. And they leave a portion of earth,
especially if the spoon is left over the fire, so that it doesn't cool too
fast.
8. In the same way I compared a deep orichalch phial, the
bottom segment of which was spherical, the inside polished. When heated until
it glowed, over burning coals, it affected the drops of water in a similar
manner, as had the iron spoon.
1), If an iron or copper vase is not pure, but
is mixed with iron rust, the experiment either does not succeed or not
accurately, because the verdigris and rust impedes the attachment of the water,
as will be seen. If this vase is not of pure enough metal, if it is heated red
hot, after a great quantity of water (for example 10 drops and more) is poured
in at one time, all impurity is rapidly rubbed off by the motion of this water,
so that afterward the experiment can be undertaken without disturbance.
10. A little piece of ice is swiftly dissolved on glowing iron,
and then it shows the same phenomena as does simple water.
XVI
From this
observation various things are understood. First, it is certain that fire
brings about the volatility of water, but not by boiling waters. For at first
the abundance of vapor increases with the degrees of heat until we come to a
certain point, namely, to that at
16.
which water boils. For when the heat increases
more, beyond the point at which water is accustomed to boil, the drops of water
stand there for a longer time, or, what is the same thing, they evaporate more
slowly there. If then the fire is increased more, the water is exhaled much
less, and the hotter the iron is and the closer to the fire, so longer do the
drops adhere to it. That is, it is evaporated slower so that finally in great
heat, such as that of glowing iron, it may be made attached a long time, at
least through 34 seconds, and its small part supports for a long while the
power of a high heat. Nor do I doubt, if in the experiment a great mass of iron
of notable thickness, which therefore does not emit heat so swiftly, is used,
then, sufficiently great quantities of water can assume a greater attachment in
that same way as this. However, there is no opportunity to try this with large
masses. In the second place it appears that the degree of fire at which the
water is most of all evaporated is that at which it boils. Third it is manifest
that the fire protects the immediate contact of bodies, because the water does
not dampen the fiery iron, nor adhere to it. Whence the idea
that the drop of water attracts a great part of the fire out from the surface
of the glowing iron and it releases the iron from brilliance to motion.
Fourth the very hot water endures without any boiling motion. Wherefore it is
necessary that at the instant of time in which a drop falls upon the burning
iron, all enclosed air is suddenly expelled. Or, what is more probable, the air
in such heat is fixed and loses a part of its elasticity. From this, in such a
fire the water droplet is left most clear on top, although its transparency is
disturbed on account of the many bubbles in the motion of boiling. Fifth, it is
correctly concluded from the perfect spherical figure of the droplet and from
its whirling motion that the mutual adhesion of the water particles among
themselves is greatly increased in such a fire so that in truth the cohesion of
water thus is made greater in heat than in cold. But really thus the sixth of
these observations suggests that water is changed into earth by a large fire,
because always after the complete evaporation of the drop some terrestrial
matter remains in the heated vessel. This has not escaped the notice of the
distinguished investigation according to the warning of
Boerhaave. For into such fire because of the very
light atmosphere all the dust from the surrounding air easily flies together,
and it can enter these hanging drops, unless other circumstances advocate the
contrary, a subject which we will not discuss.
XVII
In order to avoid all deceit, the experiment
is varied:
1. If you loose a
drop of moderately distilled spirit of wine from the same glass tube onto an
iron spoon glowing with light, this also is altered into a similar crystal
globe as soon as it touches the surface of the iron. And in the same way,
provided chat it is kept from the name of coals or a lamp which happens to be
there, even if it remains in the strongest heat of the glowing iron,
nevertheless it does not seize the flame (i.e. does not catch fire). Rather in
all these things it is similar to water; it holds itself and stands fixed
around 30 seconds or more in this extreme heat. Finally it gradually leaps
apart with a small noise, and leaves a small piece of dry earth, which is
burned tip a little after by the heat of the iron. And the likeness of carbon
or soot glows for a short time, then it splits into white ashes.
17.
2 While the spoon is held over the burning coals the drop of spirit of
wine falling takes up t1he flame easily, because it attracts it from the coals,
and then it holds it in the bottom of the spoon (i.e. catches fire falling
through the flames into the spoon and then continues to burn in the spoon).
This can be prevented if at the moment at which the drop is let loose, you
remove the iron from the coals, or in some other way cover the flame of the
coals. However, when once the flame takes hold, it does not stop burning until
all the true spirit has been
consumed, because it is done quickly in such a small drop. However in the
moistness from this spirit which remains in the bottom of the spoon after the
extinction of the flame. the resemblance of simple
water is fixed in a long enough interval of time. Afterward it flies into
several pieces with a noise and vanishes.
3. However when I have very carefully repeatedly distilled this true alcohol or spirit of wine, in very
tall glass jars. I put one drop into the glowing vase, and I set it afire with
the flame of a small piece of paper moved close with the hand. This alcohol
burns up swiftly in deep (lam.es, and no vestige of a water residue remains.
Truly if the same alcohol is protected from the flame, it has the appearance of
common water and for a long time the clear globe resisted the actions of the
fire. If 8, 10, or several drops are dropped into such a spoon, they conduct
themselves similarly, but then they can with difficulty be protected from the
flame.
XVIII
I do not understand the spirit of wine in these phenomena. Why does a
drop of it not take hold of the flame spontaneously in a very hot iron spoon
and in a very warm atmosphere, when nevertheless it is inflamed easily from
another burning body? In itself it is clear that the weakness alone of the air
is not at fault, because in that same atmosphere flame persists, if this has
been excited before with another flame. I learn
however from this phenomenon that great heat does
not destroy spirit of wine, nor does it change into its parts, unless the flame
approaches. For according to others the spirit through flame can be changed
into water, as can be read in Boerhaave's Chemiae.
Wherefore it is no wonder that the spirit of wine can be burned from the
steaming aeolipile, and therefore it is not rightly concluded from the spirit
of wine to water, which I pointed out previously. contrary
to Wolf (
18.
XIX
I show a new method
by which the most perfect goodness of alcoholic
wine can be determined.
The learned men
know that such a mark of character of great goodness is to be desired in
alcohol: that which in no way is affected by heat is also thought to be of the
greatest use in chemical solutions. That common method which the medicine
vendors use for lighting ashes with wine spirits works upon the said defects so
that the deed does not appear to be a confutation. However, the brilliant
Parisienne chemist, Gothofred the younger, describes a praiseworthy method
for the whole thing in a writing for the Academic Royale Parisienne in 1718, in
which the spirit of wine is evaluated by measuring the quantity of superfluous
water, burning it (of course) in a narrow cylindrical vessel placed in cold
water, for after the final fire the water left in a cylindrical vessel may be
reduced for measurement more easily than in any other. Nevertheless not even
with this very accurate proportion is it determined, although granted that in
common practice his method suffices for the most part. For burning spirit of
wine heats the water mixed in it, and by this same heat the greater part of it
diminishes into exhalation. Gothofred himself in his other calculations in his
proposed commentary thought that very pure alcohol is half part water but for
my part I do not think so. Because if I held such alcohol in
a torch the flame burns very slowly and from its vapor water can be collected.
For alcohol, while it is burned, is not made pure, but truly is destroyed and
is dissolved into its primary ingredients of mixture water and pure phlogiston.
Therefore water is not drawn from the spirit through flame, but the whole
spirit is changed and converted into water, as I have said (XVIII). Similarly
compared is another thing from his thesis: when quicklime begins to increase in
the distilling spirit, demonstrated over abundantly by its watery proportion,
so quicklime purifies in the same way the spirit of wine for a certain portion
but destroys the greater portion. Therefore, so that we might be certain that
nothing in the spirit of wine clings to excess water, it is necessary to
arrange the thing so that at the same time that the spirit flies off the water
is fixed and impeded in its evaporation.
It is so done with a degree of heat which has alighted glowing iron. For
if in the sprit of wine a little water is mixed, this after the conflagration
of the first is completed will cling or is moved long and evidently enough so
that it can be seen under the form of little clear globes in the glowing spoon.
So the pure spirit will be totally consumed so that no liquid remains. From
this you are certain that the spirit of wine is pure alcohol. A drop of it
dropped upon a glowing iron vessel must catch fire, for if after the flame is
spent nothing remains of water. that is the best
spirit nor is it able to hold any other impurity. And such a spirit in the
Reaumur thermometer rising encheiresin more
easily for giving judgment on the solutions of bodies makes the decision more
certain.
XX
Similarly it happens in the same way with other and greater spirituous
compositions in the described liquors. If a drop of spirit of sal ammoniac for
example prepared with the spirit of wine is placed on a burning iron vessel in
some way the first outside is covered. through itself
probably. It is not burned. but the large globe makes
much foam as if supported by tenacious bubbles and it exceeds the mass of the
original drop in the vicinity of some hundred each. When, however, this drop is
set afire by a flame from a
19.
flap of paper moved towards it. it burns as does the spirit of wine. After the last flame it
leaves a very clear drop of water fixed for a long time in the fire. But if the
spirit of sal
ammoniac was prepared with urine and quicklime and water in a manner
similar to that described above, this never would take fire, but nevertheless
foamed and formed large bubbles, which disappeared after a while. It left a
particle of water resting in the hot vessel for a long time. In several other
saline liquids I tried similar things, and with few exceptions I saw the same
phenomena, in the reckoning of which I will
not be long, because nothing now can be taught
unless the known nature of simple water is worthwhile to tell over.
XXI
If a drop of olive oil or some other fatty material is put into a very
hot iron spoon it never is rolled into a ball but widely adheres to the glowing
iron as if it moistened it. If it is put on a fire, in a moment of time (even
without the external flame moved towards it), it emits a flame and a great
denseness, in which a little while after vanishing it leaves copious black
carbon in the hot vessel. Afterwards the image of a coal grows red, and shows
copious white embers (earth, in truth).
XXII
Water does not boil in the heat of glowing iron (XV. No. 1) or, what is
the same thing, the air leaving does not form bubbles. Both of these phenomena
are possible either because the air enclosed in water is not emitted, or (if it
leaves) it flees insensibly. In the first case it is necessary that air be
fixed with water through fire in some violent way. In the latter clearly the
viscous-ness of water is such in that immense heat that it may not require a
bubble to rise. This also is true, as the following
experience shows: if you apply a cold body for example an iron staff to drops
of water clinging without any boiling motion in the fiery heat of glowing iron,
or if you move a cold pebble towards it, or even if you drop a water drop from
the burning metal swiftly into another less heated vessel, this quickly will
boil, and with a boiling motion it vanishes swiftly into the air. Whence it is
established that water in great heat does not give up its dry air, but retains
it, since after this if the heat is diminished to the point that it can be let
out, then the air (clinging fixed with the water between the spaces of water in
great heat) is yielded.
XXIII
It follows that in the great heat of glowing iron not all the liquid but
only the simple water and the more fixed air is made so. For the spirit of wine
swiftly disappears. On the other hand the composition is inflammable, with a
water portion left over (XVII). The spirit of sal ammoniac equally with wine as
with urine is expanded, inflated, burned in its born essence, swiftly
evaporated truly it discharges the more fixed water contained in itself (XX).
Olive oil needs to be protected from the flame. It is not changed into a globe.
It is attracted by the burning iron. It is very quickly changed into carbon
and ashes (XXI). But simple water alone, or that which does not cling in other
liquids to that water mixture, is rounded into a globe by the fire. It does not
boil, it shines and for such a paucity of matter clings fixed for a very long
time. That same water there fixes the
20.
enclosed air. For by water it is done, rather than
by the vehemence of the fire, thence it is clear, because the spirit of sal
ammoniac in such a heat does not fix its contained air, but permits its great
expansion in very ample bubbles (XX). However, we conclude that
some air can be fixed because certain minerals, namely limestone then melted
slabs next a red cinnabar made from lead solidified a long time by fire then
lime of antimony and perhaps several similar ones, are made heavier by fire. We
know absolutely that the acquired weight from fixed air in the mixture can be
determined through the Hales experiments in Stat.
Veget.
XXIV
Therefore, it has been sufficiently shown that water made volatile is increased
with degrees of heat until it comes to that point at which water boils and all
very swiftly is evaporated. Then truly
if the heat excites more strongly I diminish the volatility of that same water
and increase its fixation by the added heat My hope now will be to answer the
same objection which can turn away that whole observation: obviously in a great
heat water tends to evaporate less, not because it is more fixed when in such
heat but because the expelled air does not require the atmosphere to be made
lighter by the exhalation of water particles lifting into the air. For there
is a certain hydrostatic law: a lighter body in a specific fluid. with a specific gravity, that has great inequality in the
proportion of the weight of the fluid to the ascending body ascends with
greater swiftness and force. Which thing can be seen by all: water in an
atmosphere very rarefied through heat ought to be evaporated less swiftly. But
in truth it is evident to me that this objection may be made of nothing in the
case presented to evaluate. For (1) it has been sufficiently demonstrated by
distinguished Hamberger in Phys. 47'7,
that the exhalation of vapors in no way is done according to hydrostatic laws;
(2) not yet have we explored to what degree the atmosphere can be rarefied in
the dry heat of glowing iron; (3) in the same degree of fire mercury exhales,
much heavier than water: (4) a flame in this degree of fire can be aroused as we see, from the spirit of wine (XVII, No.
2) or from the spirit of sat ammoniac (XX) and from fat (XIX); where there is a
flame, however, it is necessary that sufficient air enter there; (5) it has
been shown besides (XIII) that water expires in the Boyle vacuum. And the
learned Krafft observed concerning the exhalations of water in free air and in
vacuum, that there is hardly any difference by reason of the quantity given in
time. If therefore water in a place empty of air and coolness exhales swiftly,
I do not see why it could not ascend in equal swiftness in free air if rather
rate and heated. Which reasons contributed also dissolve the opposing fact, so
that by nothing can the verisimilitude be overcome. Nevertheless I dig out as
the whole deep basis for my argument another experiment I have investigated in
w1hich it is proven with certainty that a drop of water in the heat of glowing
iron is made more fixed not because of the atmosphere's failing but from the
action of the fire. Namely: either a little piece of lead or tin is put into an
iron spoon glowing with light. It quickly melts there and is spread. To this
liquid metal of lead or tin carefully place a drop of simple water through the
glass tube described above so that it will not fall on the convex surface of
the metal. You will see this drop, hanging over the lead, dispersed
within 6 or 7 seconds. Which water if joined to the lead in the bottom of the
iron spoon and therefore laid down in the same atmosphere, it remained more
than 34 seconds. Also if one places another drop of water
21.
in that glowing
vessel that is put so that it is touched to the lead and so it will not hang
over it, you will observe that as the surface of the lead touches it, it flies
away with a light motion, and it emits a noise as if the body were dashed against something cold,
and then more swiftly with many that if it
does not touch lead. Truly, very surely, no one knows
the nature of these things. The heat of the
melted lead is much less than of glowing iron, wherefore the melted lead in
respect to the glowing iron is called a cold body. And above this cold or
medium warm body, a drop of water more swiftly exhales than if it is placed
above burning iron, even though the ratio of the atmosphere on both sides will
be very perfectly equal. Therefore the rarity of the atmosphere is not the
cause of a greater fixation of water in a larger fire.
XXV
Therefore, I dare to propose this new thermometry to the physicists and
learned men of
Chemistry, so that in measuring large degrees of heat it will be done equally
certain as with an ordinary thermometer in measuring lesser degrees. For it is known that until now with those thermometers that we
used, they indicated the degree of heat through the degree of expansion, as
much as the enclosed liquid undergoes. Formerly it was established that
all the liquid especially is incited into a motion of boiling and its heat is expanded as swiftly
as its degree of expansion and cannot be measured better.
From such a thing water and the spirit of wine boil on a small fire to the
point that they are not able to measure great degrees of heat. Just then the
mercury was added to these, for which often a greater fire is made before it
will boil.
But in truth also
mercury was despised and shunned for this too much, although from its moderate
expansion the heats of metals and melted salts we might be able to find out.
Therefore in its place learned Muschenbroek substituted another instrument,
which he called the pyrometer, whose
construction is such that it is a solid body, such as an iron rod, as long as
its extended length shows in proper indication those degrees for various
degrees of heat. Since such a very ingenuous instrument is greatly used in
physical things and it can measure higher than all others, so the remaining
kinds of thermometers can be altogether tested by this thermometer, and also a
convenient degree scale is assigned to each. Where however a different degree
must be measured in vessels of burning or melted metals or salts, because of
its structure the pyrometer is applied with difficulty, in which cases I
propose that a method more deserving be devised.
XXVI
1. So let the vessel be hot iron and in addition let it have the degree
of heat of boiling water. Onto this a small drop of water put out boils and
flies apart completely within one second, or even faster. This lowest and first
degree of heat is agreed upon and measured.
2. It is established that with lead in a small trough, of which the
greater the mass the better, into which you pour a pure water drop of an equal
magnitude as before, the water will not boil, but is evaporated within 6 or 7
seconds.
22.
3. The lead is
excited by the heat so that it boils [the Germans say treiberi (drive, push)] ; a drop of water then let loose will not fly apart
until after 14 seconds or more.
4. The iron glows so that the whole is made alight: a drop of water in
that will be retained through 30 seconds.
5. If then you stir the iron in a furnace anemio with a big fire. a similar drop
will he fixed for 34 or 35 seconds. And in this degree of heat the iron remains
until melted. For if you detain for several hours a little iron vessel in this
same
high heat, so that it is made near to melting,
nevertheless the water will not be able to be made more fixed in this unless at
the most it is detained for 35 seconds.
6. If in this same iron vessel greatly heated and nearly melted you
place one grain of mercury, this flies apart within about 18 seconds. However,
in those that I used, three water drops were equal to two grains. Therefore two
or three grains of mercury flew apart within 12 seconds. Therefore it is in
that degree of fire that the fixation of water is to the fixation of mercury as 35 to 12 or as 3 to 1 in
nearness. That is remarkable enough. For with the first, as they say, nothing
has been learned easily----to be able to make a drop of very pure water without any mixture as in
free air, with the action only of the approaching fire, ever is made repeatedly
more fixed than an equal quantity of mercury.
And also with this second method many bodies of metals, earths, salts,
and minerals can be explored as to the degree of heat. For as in former times
we measured from space in the use of the thermometer, so here in time.
XXVII
However the fixation of water does not increase in infinity with the
increasing heat, For iron and copper as long as they
burn fix water. Especially in fact they did not fix it more, rather they
changed that very drop of water brought together with them with such violence
into an elastic state, that such impetus was perhaps
not to be found elsewhere on the surface of the earth. Why do you wonder
therefore that nature rejoices in changes as the beautiful cycle of all
things"! Certainly water at the degree of heat 32° Fahrenheit (when it
forms ice) is
a solid and rigid form and is
the same if that heat increases It is dissolved not
into a liquid form, but is changed into elastic vapors, and grows in volatility
to the degree 212 of the same thermometer, evidently when it boils. And the
fixation again increases with the degree of heat of glowing with-light iron.
Then again it was fixed with the iron at a great volatility and elasticity. Who
however, determines what was done formerly? Meanwhile from these which formerly
I have investigated, it is plain that in the scale of heats, a new fixed point
ought to be put, namely that of iron glowing-with-light. When therefore
formerly none other than three fixed and constant points of heat were known,
namely of salt ice, of natural congelation, and of boiling water, to these this
fourth can be joined not unsuitably at the end. For nothing more certainly
helps scientists than to have a constant terminal, from which you can measure
others. This maxim of Archimedes : Give me the foot
that I might measure (da possim figore
pendem).
23.
XXVIII
Readers, you do not see me advising that which I indicated in the two
preceding paragraphs unless there are possible plans for a thermometer of its
kind. How to put together a table of many mineral bodies having their degrees
of heat wasn't permitted formerly among my other works, my leisure being small.
Meanwhile I show that many chemical phenomena proven by this method are able
to be explained. Pure earth and potter's earth evidently never acquire great
heat. For a baked dish or similar earthen vessel, heated for a long time and
very shiny on a high fire in a furnace anemio, is made
very hot but nevertheless it is not much hotter than water in the boiling
state. A drop of water is fixed at a minimum when poured into such a melting
pot, so that in a moment of time it boils
and is evaporated. Again that which I asserted in XXIV is confirmed by
such phenomena, namely that the fixation of water does not depend on the lightness
of the atmosphere for the most part. For if the baked dish melting pot and the
iron vase glow on that same fire, nevertheless a drop of water boiling in the
former is evaporated quickly. However, in the latter it is fixed for a long
time. Next the reason is clear also why pieces of earth cannot be found. They
endure the fire whole if they are pure. Obviously because they do not attract
fire unless to a certain degree and that is why such convenient instruments are
made from these discovered minerals. A flint stone, however, made very hot (as
much as melted earth) fixed a drop of water much longer. Moreover, several
times it seems to me that concerning the experiment described above on Glowing
iron in various masses of heated iron (which by chance fortune had offered as
an instrument for economic items) the fixation of water did not succeed and I
marveled until I observed that these masses of iron had been spread over
scores. For with those separated with a hammer, the undertaking soon succeeded.
Wherefore scores of iron with common potter's earth and also with simple water
assumed the same degree of heat, not greater. Silver has a melting heat less
than that of burning iron, but never accurately determined. Alkaline salt glowing
but not yet melted into a liquid will resolve distilled water, wherefore from
these things and through this method nothing can be explained. But as soon as
they are melted into a liquid, they make a drop of water dropped in very
elastic and nearly give the impression of melted copper. Wherefore it follows
that this salt is made very hot in a state of fusion, and it is clear from
these things why the flowing motion of the said chemicals is seen
: because it is obvious that they incite an immense fire in a brief
period of time and they pass beyond extreme so that even metals are not able to
dissolve because of another reason than maximum heat alone. Concerning boiling
oil perhaps an exception must beset down from the general rule. since they drive off with great impetus water poured onto
them. Whence nevertheless it is not probable that it has same
degree of heat as melted copper. About these things and several others
which I tried by this method, I am now (when it is permitted to write about
these things) more certain than at that time. For more than any other thing it
seems probable that the magnitude of the water drops could not always have been
very perfectly equal.
24.
XXIX
And also, while I might occupy myself more strongly with the phenomena
in these descriptions of water in fire, more often I tried to find out also
whether water in this state was impeded in its evaporation by fire according to
the Amontonian rule. The truth
remains that even though water has been more fixed
nevertheless it stays at the same temperature. Easily one sees (no matter who)
that through the thermometer used it can be determined when their masses and,
the proximity of the very hot metal will not permit their application when
compared with a few water drops which have been tried. Nor have I described all
of the methods which someone ingenious has supplied so that I might make use of
these toward one goal. I tell only about those which succeeded. It is known
that mercury cooked in water does not fly apart, even if a very strong fire is
applied, unless after the water touching it has evaporated. When therefore I
mixed a very small drop of quicksilver with a drop of water in a heated iron spoon,
immediately the mercury was seen in infinitely small balls distributed
throughout the water, as if it were dissolved. But afterwards when all the
water was evaporated, the mercury showed itself
conspicuously in the spoon. and
it flew apart following the water. When therefore I showed formerly (XXVI, No.
6) that mercury in the heat of burning iron is-more volatile than
water, the same is true when it lies in water. It does not fly apart before the
evaporation of this. Water is seen in its greater fixation, nevertheless, not
to reach the degree of heat which is required so that mercury might be made
volatile. Therefore it is seen that water fixed on glowing iron is not any
hotter than boiling water, hence I conclude that the Amontonian rule probably remains
true in this case also.
Similarly, I poured drops having remained for some seconds in the heat
of burning iron from the iron spoon immediately into another vessel. And in
that way with repeated diligence I collected a great abundance of this water
consumed from that, so that I might inquire whether
its sensible qualities had been altered. However I acquired nothing by this
operation unless very pure and clear water which was changed through cold into
ice as well as other water. It dissolved salts, it did
not cling to oil. On the other hand, if from that very hot ladle I poured such
drops over various refines and other bodies not easily soluble by water, I
observed nothing that I could not expect from boiling water. Whence again I
conclude that the rule of learned Amontonius is probably true, unless the water
can be heated to a certain degree. However, my investigation is debated for
truth.
XXX
Before I continue
to the following things, I ought to describe another kind of experiment with
common water upon a strong fire, about which at first I intended to investigate
whether a small portion of earth always remains manifest after a drop is
evaporated in a glowing iron spoon, and whether this earthy portion is born
from the water itself or whether it ought to be ascribed to other causes. I
prepared for myself some little twisted glass vessels, which had a
circumference about the size of a chicken egg. Into one of these washed and
purified twisted vessels I accurately dropped out one ounce of very pure distilled
water. Into the mouth of the vessel I put another glass receptacle firmly
without mastic but nevertheless sized to the vessel. I made it firm without
mastic so that I
25.
might have less fear of the glass breaking. Thus,
I set the so-constructed vessel in the said furnace. Learned Teichmeyer gives
a description of it in The Chemistries, and
more accurately B. Schultz in his posthumous work (Der Chemischen Bersuche, under the name taken from the covers)
where it is evident that the jar or iron or baked earth was
placed in a furnace anemio so that its aperture was not on the top but to the side of the furnace, just as the domestic arch is usually placed in the furnace. Into this jar (which in my furnace was fashioned from earth) I placed over a small portion of mud a twisted vessel, and swiftly thus I made it firm so that it could not easily be dislodged or turned around, Before I put the vessel into the furnace I had already made a fire, so that the jar with the mud might be heated lightly. Also it had been turned correctly, set, and placed immovably. I placed an iron vessel within the furnace. and I built up the fire as large as I could so that within a brief time the pot and mud began to glow with light. And after a brief time the twisted vessel glows and quivers. While the fire increases so swiftly, a good quantity of water in the semblance of vapor is propelled with impetus into the receptacle. where it is condensed at last into water again. Especially when the heat comes to the degree when now the jar and mud and twisted vessel deeply and utterly burn, then
the water which is in the bottom of the twisted vessel jumps up and (because of the described structure of the furnace one can observe it with the eyes) it is evaporated gently and slowly, and at last is very fixed. Thus, so that on this fire about a drachma through half an hour and more perhaps without any fume or vapor and without any motion of boiling appearing. When then you build up the fire so that the glass melts and seems to approach near to fusion, then the twisted vessel with a great noise suddenly flies apart and is diffused into fragments. The water from the broken vessel flowing over the glowing mud extinguishes it with a hiss. For truly if you take the broken bottom of the vessel from the furnace and consider it with attention, you will find a considerable portion of white earth.
XXXI
This experiment (XXX) succeeded correctly for me many times but it lacked success several times for it is difficult to make the twisted vessel firm so that it stands completely immovable in the furnace. For if it is agitated or moves even a little then water clings to the bottom and to the sides of the burning vessel so that this is now ruptured before it will have reached full heat and eludes the hope of the experimenter. 1 declined to omit this experiment, imperfect and not -repeated-enough as it is, until I thought of investigating water by a better and more certain method in enclosed heated vessels. Perhaps nevertheless it will give an opportunity to others, something for better experimenting, for which reason I am pleased to add it. However it seems from this that now I have probably taught further above (XXVI) how water committed to a larger fire than of burning iron (for example fused copper or fused glass or beginning to be melted) does not remain more fixed, but at most the elastic vapors are perhaps changed into elastic air. For the same reason a new probability of the Amontonian law is clear: that water obviously even if it is made more fixed in such a fire is nevertheless not hotter. Because after the broken vessel extinguishes the underlying glowing sand with a hiss. plainly besides the cold water (or lighter-heated) is able to hold itself, wherefore in its nature and its heat it is not seen then to be much changed. There will be another occasion, however. for speaking about the fixed part of earth remaining in the bottom.
26.
XXXII
Now the reason for other changes is to show in what manner water, a body in a
very fluid
state, is made firm. But for this end it is not yet applied to common
experience. From
Aristotle, whose hypotheses I have shown today in two former experiments (III).
it is known that the possibility of the change of pure
and simple water into a firm visible body could be demonstrated. Another is
Boyle_ in whom if the method is correct, it is established that water is
frequently changed by distillation into true fixed earth, see
his translation On the origins of form, experiment 9.
Another is the marvelous man Helmont, who in wondrous genius teaches that all solid
parts of plants and perhaps of animals as well are born from very pure water
alone. He fed a tree of five pounds
with the nourishment of water alone to the weight of 169 pounds,
see his tract On the complexities and
mist. Elements, section number 30.
XXXIII
Again the experiment of Boyle succeeds from no one's opinion, since it
is perhaps length of patience which one requires to carry out the annoying
labor. Perhaps also
because on the authority of Boerhaave, who accuses it of fallacy, since
he affirmed that an earthy portion left by distillation in single atmospheric
parts and an abundance of terrestrial dust (which is always flying through the
air of a chemist's laboratory and adhering continuously to the vessels and to
the liquids) must be its origin. With such an objection the Boerhaavian idea
has not very much probability, because such a portion of terrestrial dust is
required for explaining the Boyle phenomenon. It never flies in quiet air,
nevertheless if one wishes to investigate more deeply the truth or falsity of
its presence, I urge him to commence with the distillation not in large vessels
but in small, not in abundant water but in a small or medium portion of it, and
not on a slow- or little fire but on the biggest one on which
vessels can be heated safely, in the method which I have described (XXX). Do it
thusly because of an enlarged fire a greater portion of earth is anticipated
and because a better atmosphere and more certain dust can be enclosed in a
small vase. For me certainly there always remained in the water so tested some
white earth, even much more abundant than it is permitted to deduce from the
atmosphere.
XXIV
However the experiment of Helmont on the growth of plants through water
alone repeated infinitely always correctly succeeds, nevertheless better in
one kind of plant than in another. Learned Woodward opposed these experiences
set down by Helmont with great zeal in the English Philosophical 7"rarisactinns, year 1699.
number 253, where he purposes to demonstrate that
the plants do not increase from water, but from the portion of earth which
usually always occupies the water. And which, if it stands in a quiet way;
gently is put aside in the form of living wood. For true vegetable material has those living wooden stalks. And he shows in this that
plants are nourished more richly with water, with which principle they
overflow, much more as it pleases a plant to grow from such peculiar material
(so created by God). In Woodward more
27.
modern physics is applied to it, as is clear from
the systems here and there. Nevertheless the endeavor of the illustrious Eller
outdoes it and he also shows in his communication to the Royal Academy of
Berlin that this green wood matter is least common with water, but is sprung
from a very subtle phlogiston mixture through the solar rays.
XXXV
It is also permitted to consider in
passing that Woodward, while he denies Helmonta will not show the
state of the controversy and would combine the two propositions with
themselves, the one of Helmont, who asserts that the solid vegetable parts are
born from water. But in the same piece in which he describes the experiment on
the willow, he denies with abundance the Aristotelian dictum of transformation. If, therefore, Woodward thinks that the earthy parts
of vegetables also are born from the earthy particles of water, it is just so
with Helmont, because it is easily conceded that there is a very small quantity
of earth in all plants, this which before was concealed in the water. Whence,
however, is born the great long part of solids remaining in vegetables which
are not earth and also do not lie in such form in water? Therefore, Woodward
did not distinguish between a solid or a firm body in general, and a terrestrial
body in particular. On the contrary, if he had examined that same green
material as he calls earth and which he thinks is intermixed with all water, he
could easily have seen that it was not earth, but
richness or fat.
And also while he concedes that structures do not increase from such
earthy matter, he proposes to himself that these are nourished from earth.
This is a contradiction.
They are also less distinguished by him in turn than the great Boerhaave
does, a man beyond my praise, and one of
those who ought to be venerated since through them it appears not to be a vile
thing to be a human. However as Boerhaave was the leader of
However, in
cremated bones changed through fire the lime is not the same matter as of
living fibres, but rather it fills the interspaces of the vital fibres, dead
matter in that living body and remaining destitute of life ;
however the solid living fibres have been destroyed by the magnitude of the
fire.
Bodies are born from the albumin of an egg without any addition except
heat, membranes, cartilages, bones, and true solid parts. For also if I do not
deny that something of earth is required in the mixture of solid parts in the
vegetable and animal kingdom, nevertheless I think it can be demonstrated in
respect to those left more formally than materially for the necessary firmness,
and it profits little as it would be an enemy to life because it is lacking in
elasticity. However in this passing note I have said that I might show that the
reasonings of Woodward detract nothing from the Helmont experiments.
28.
CONCERNING THE WATERY SOLID
MEMBRANES OF BUBBLES
For water really is able to be
changed into some firm body not in the way of ice and by the observation of
chemists (for also into earth it can change but I t ouch not yet this question)
but especially the idea is to produce watery bubbles. Thus they form a chance
at most so that the method by which water compacts can not be known too little
thereafter. Isaac Newton, after he had measured the heavenly spaces, did not
disdain to consider the water bubble, so that he might teach nature from its
color
alone. He intended a second optics book on the
explanation of bubble phenomena.
I fear little to declare publicly that which I
draw forth about the nature
of water from bubbles was aroused by the great example of
a bubble arises in all water agitated and
moved in which there is some richness. For the foam over the liquids of animals
or over the fertile rain if it falls from high or in another way is shaken,
what is it if not a mass of bubbles? For what is the reason that this will not
turn some to foaming bubbles, which while they show not a durable beauty, they
are want to be a very frequent symbol of our fragile and
mundane vanity. At least the better and more
constant make bubbles unless some salt is joined to water either fat, acid, or
alkaline. The largest and most beautiful of all they make from soapy water. I
examine first, therefore, bubbles forming from a little soap.
XXXVII.
Common soap is made from alkaline salt,
quicklime and fat mixed with themselves and with water
cooked into the form of cakes. Many types of soap are had. There are two
principally in economic use, one of the two called Venetian (white); the other
called Dutch (or green-black). The former is made from the fat of vegetables,
like olive oil. See Ramazzin, On diseased artif. Opp., p.m. 686. The latter is made from the grease of
whales. That is thickened to dryness and hardness usually; this is soft, semi liquid
and not cooked enough. For which reason the latter is than the former, not only
because of the content of oily fat but also because Dutch soap is commonly sold
almost a third part superfluous water which does not cling to the cooked out
material, which increases the weight and diminishes the price from good causes.
It seems also that there is more alkaline salt in Venetian soap, less in Dutch
soap. However, whatever difference this may have, the said black soap of
29.
XXXVIII.
The black soap of
(1) for the most part of the same specific
gravity as water of common purity, nor for sure does it float on it, nor is it
deeply submerged, but its mass immersed in water even before it is dissolved,
to whatever place it comes there it stays. For which reason if we dilute it
with plenty of water, or this solution is saturated or more dilute, the
solution remains at the same specific gravity, truly in common with water. For
the oil of soap is lighter than water, salt heavier with lime, and these two
are seen in this mixed soap, so that the excess of one supplying the defect of
the other make a medium gravity, equal to water. (2) The proportion of oil to
water, salt, and lime are not always the same in soap, so that certain ones may
be distinguished by this. In two drachmas of this soap which is commonly used,
which I dissolved in purest water, I liberated the oil from the salt and lime
with the use of spirit of natron, I came to a fairly accurate measure of 50
grains of oily fat, the original fat, because the salt put into this I am
convinced was given to the very bottom in the coagulated juice, after a
delay of some hours extracting itself from the
salts, it ascended in a fluid form to the top of the water. Again knowing to
one part of fat in soap are received three parts of strong lye, and one part of
more dilute lye, (Boerhaave, Chemical Principles, II, proc. 73,
no. 4) in one ounce of straight lye hangs 80 grains of alkaline salt (Hartley
De libon tri t. Steph., p. 77, from the measure of Hales).
It follows that in two drachmas of soap are suspended around and at most 30
grains of alkaline salt. Furthermore in four ounces of straight lye there are
not but 18 grains of quicklime(Hartley, loc. cit.). It
stands that in half a drachma or 30 grains of this salt not more of lime is
than about 1 1/3 grains. From which I will not wander far from the truth
assuming that in two drachmas of black soap or in 120 grains are had 50 grains
of oil; 30 grains of salt; 1 1/3 grains of quicklime, and water not cooked
thoroughly at least 38 grains. (3) So that bubbles are formed by this soap, it
must be dissolved, or diluted, first in plenty of water. Eight parts of water
against one of soap is sufficient. Such a solution I will call soapy lye. Then
it results that in one grain of lye there hangs 1/9 grain of soap (for 8 parts
are of water, the ninth is of soap) because in one grain of this soapy lye are
dissolved if you please 5/108 = 1/21 grain of fat, 1/36 grain of alkaline salt,
1/648 grain of quicklime. (4) This solution, or soapy lye, usually was stirred
in some manner, although rain water or most pure distilled water is used, for
it grows green, nor may it be seen through perfectly.
After which when it stands quietly for a few days, it is wont that some of the
oil is precipitated to the bottom, and yet the lye is not clear enough that it
allows this solution for the most part to be made lumpy, nor to be mixed intimately
(the soap with water). (5) Also this lye exhales in a very soft and long heat
of one summer, before which the depth becomes clear, part of the salt separates
from the oil, and a salt deposit forms on the upper surface, because it shows
the imperfect mixture of oil and salt in this soap. (6) If into such a turbid lye you pour a medium portion of the spirit of a
good wine, it is seen through after a brief delay, with the help of the spirit
to the mixture, nor does it appear disturbed any more. (7) When the lye through
a mediant spirit becomes clear, it loses the virtue of
30.
forming bubbles, or at least only at a minimum, so
that the bubbles can be extended and especially they are not colored. The same
thing happens if the lye becomes clear after an oily deposit (no. 4).
These were defined by me in
explaining the origin and nature of bubbles. Many objections were raised, which
are formed easily concerning a thing not enough known or determined.
XXXIX.
So, therefore, one may make
bubbles from this lye, to touch upon some pipe in this manner, to extend a
hanging drop through a tube, and there is in need of a gentle breath. It rises from a watery, humid, very fluid
non-elastic, turbid body, oh wonder! the
membrane hanging on the tube is solid, dry, spherical, steadfast, elastic,
pliant at first, very rigid afterward, colored, divided into many layers, and
in many other respects admirable. All men who see such an incredible change for
the first time are wont to be seized in some degree of admiration. For by a
gentle wind the water is changed into the state of ice or glass, and it becomes
solid in body.
XL.
So, what I saw in bubbles,
others also could see at their convenience. For whom it pleases to innocently
play this game, I shall describe the apparatus which I used.
XLI.
By the difference of the lye and of the tube
and by the vehemence of the breath being
31.
varied, so is the magnitude of the bubble. Many
are the contact points between the bubble and the tube, to which a greater
quantity of lye can cling, therefore on it a greater
bubble is inflated. When the head of a clay pipe which they use for inhaling
tobacco smoke you touch with lye, the bubble can be inflated to 8 fingers in
diameter. If you touch glass tube with the thinness of a thermometer, hardly
ever is the diameter
of the bubble made more than two fingers. For
even if you take up more of the lye into the tube than suffices for such a
bubble, nevertheless the bubble is not made larger, but the superfluous lye is
collected on its bottom in a drop which adheres to the bubble partly. However,
it can be taken away by the finger's motion, without violation of the bubble.
However, it suffices for the bubble that the quantity of lye which can ascend
spontaneously in an upright tube through the force of adhesion. If the glass
tube, and in that of several that I used, I moved perpendicularly in the lye,
so that the other end of the tube touches the surface of the lye lightly, the
lye in it ascended spontaneously to the altitude of three finger lines, and
from that quantity if I blew a bubble, no drop hung in the bottom. If, however,
through the inclination of the tube some more of the lye I admitted into the
same tube, I could effect from this quantity a bubble
equal to the first but not greater, but that which was superfluous was
collected in a drop, hanging from the bottom of the bubble. Therefore it is
seen that a bubble is not able to be made unless from
one drop of lye. However those drops, because
of the diversity of the tube and with a different force of cohesion to it, can
be larger and smaller and also make a difference in the size of the bubbles.
XLII.
The portion of lye which fills up my tube
ascending freely to 3 lines equals in weight ¼ of a grain. For I was able to
know certainly that if all this tube were filled with similar lye, and well
wiped off on the outside, I placed it on the balance so that the weight is discovered from the weight of the dry tube I
divided the abstract with the number of parts of the tube's length, of which it
equaled three lines. When therefore a cubic finger of water weighed equally 311
grains (for lye with water I suppose the same specific gravity, number 34) it
will be: 311: 1 = 1/4 : 1/1244, where 1/4 grain of the
lye occupies a mass of 1/1244 of a cubic finger. I could through inflating
change this little mass into a spherical membrane, whose diameter equals at
least two fingers (or more, until it is ruptured), a very small mass. For
assuming the ratio of the diameter to the periphery of the circle as 100 to
314, the greatest circle will be equal in its sphere to 6 + 7/25 fingers;
however, the greatest circle drawn out makes into 4 parts of the diameter the area
of its maximum circle equal to 3 + 7/50 cubic fingers. Which area quadrupled
gives the surface of the whole sphere equal to 12 + 28/50 cubic fingers. Therefore with the surface known, if this membrane
is placed on an extended plane, it will be considered as a cylinder, of which
the altitude is equal to the thickness of the membrane. When therefore (as
formerly was shown) all of this membrane is brought from the drop, its mass
equals 1/1244 cubic fingers if the base of the cylinder in this way is said to
equal 12 + 28/50 cubic fingers, and the altitude of the same, for example if
the thickness of the membrane is found to be called x, it will be 12x + 28x/50
= 1/1244 cubic fingers or 628x/50 = 1/1244 cubic fingers. x=(1/1244:
628/50) = 50/781232 = 1/15624 fingers. Therefore the thickness of the membrane
in such a bubble will be equal to 1/15624 fingers, which
32.
thickness haply coincides with the 66/1,000,000 in
the Newtonian tables. So, that which I propose about the bubbles ought to be
understood from such a bubble that was extended into a sphere from 1/4 grain of
lye to a diameter of two fingers and whose thickness of membrane is 1/15624
fingers.
XLIII.
Therefore, first I
observe that that thus born and determined in the bubble is that such lye
indeed is changed into a solid and firm membranous body. That sense teaches
which distinguishes clearly a fluid body from a firm one. For if it touches on
something so that you take up more of the lye than suffices for one bubble,
this superfluous portion collected in the bottom of the drop differs greatly
from that same bubble so that it is permitted also to remove or to wipe off
this drop from that with the finger. If at first the drop was wiped off, a new
drop in the same bubble is never again collected, but a bubble of the same
thickness remains obvious to the sense and up to the time of its bursting.
Therefore
through the enclosed smoke much more brilliantly, so that the shining
recalls to mind a very beautiful star, all glory of which perishes if the
broken fragrant smoke departing shows that it is ugly within, and with the mark
of man's splendor makes emblems of misery. If therefore the membrane of the
bubble is not solid, the smoke, at least, it contains, and rather transmits the
form of fluids. For a smoky body intruded into water or fluid through some tube
is at least contained in that tube but the following soon demands better
hydrostatic laws, as from the fluid it is customarily extricated in the Persian
manner of inhaling tobacco smoke through a water medium,
33.
described by Kaempfer in a charming, incomprehensible
etc account which shows that it may be imitated.
XLIV.
Furthermore this membrane is
dry, nor does it moisten a dry finger which touches it, especially if
you bring no more of lye than is required for forming the bubble (37). For if the lye is abundant, the particles of it flowing to the side
in such a way dampen the finger and especially in the really wet drop they are
collected within on the bottom of the bubble. If onto such a dry bubble
you pour a drop of water gently and moderately, this flows over the surface of
the bubble just as over a glass and it again is collected in a drop, whence it
can be wiped away with the finger. On the other hand it destroys it completely
if the gravity is enough to overcome the cohesion on the bubble. This water
poured on is not mixed into the membrane. It does not melt it, nor does it
adhere to it. Whence it is certain that this membrane is
truly a solid and dry body.
XLV.
Moreover, the membrane of the bubble is not
in a solid condition but elastic. For it does not resist in that way its
expansion, and it requires a state so that it may be extended effectively, but
also it always restores itself into a spherical form if its figure has changed
from external causes. For with the finger (which ought to be dry) a small pit
can be pressed which springs back with the finger removed. The bubble can by a motion
of the tube through the external air be elongated by the agitation, curved
around, made thin, compressed, but nevertheless it always restores itself into
a spherical form as soon as the mutating cause ceases.
XLVI.
The bubble has at first a perpetual struggle
for bending itself.
For if the tube from which the bubble hangs
remains open (however, it is easily obstructed by saliva flowing from the mouth
into the tube while inflating) so that the external air through the tube into
the bubble is freely kept going and returning, and the pressure of the
atmosphere is equal,
as much on the outside as on the inside
surface of the bubble, nevertheless the bubble successively restrains itself
and the accelerated motion is diminished, expelling the contained air through
the orifice of the tube, until to such a point it has contracted that with its
evanescent cavity it falls condensed into a drop from the tube. That is seen
much more evidently if the bubble is filled with some smoke. For the smoke is
all visibly expelled through the open tube as if through a fire-place from the
elastic contraction of the bubble.
34.
XLVII.
The elastic contraction of the bubble (46)
especially, as long as does not yet shine with colors, has joined flexibility
and tenacity so that it is not easily broken or divided into parts, but that is
irritated in a thousand ways and it permits itself to be perforated anywhere
(not in a sharp way but with blunt instruments which again extracted the bubble
is by no regard to means destroyed but the wound is made quickly and freely
closed). In regard to which, however, the longer the bubble lasts and the more
clearly colors begin to appear in it, it is made slowly more rigid, so that it
cannot be punctured anymore without a fracture. And a rigidity
is observed greatly in the black places of bubbles, as those black spots
(described by
XLVIII.
This explosion of the bubble with similar
phenomena touches wholly
upon that marvelous explosion that we observe in
the said glass drops. For such a drop of its body rudely pounded with a hammer
does not fly apart as soon as the tip of the step is broken but soon the whole
bubble is dispersed with impetus into a cloud of dust. However a similar bubble
does not cracks unless it is touched in the black spots; in all other points it
sustains a stronger impulse. However, this explosion of particles always proceeds
to the center rather than to the periphery. For if within the bubble another
bubble is formed through an intruding tube on the side, this interior
disturbance breaks up at once the exterior, however -- the exterior first
breaking strikes the interior less, nor does it move in any way. That holds itself
in a glass drop similarly, see L. B. de Wolf.
XLIX.
There is therefore in the bubble
a double struggle, doubtless the first centripetal
(46) which especially manifests itself in not yet colored bubbles or also in parts
of colored ones which are destitute of colors, and in this state it is seen to
be greater than the opposite struggle. However the other is centrifugal (47)
explosive, strong, in which all or at least particles individually withdraw
violently and are dissipated widely, which seems to reside
35.
in colored bubbles and especially in
the colored parts, moreso however in black spots.
L.
That in which there is much dilute lye from which a bubble is formed,
i.e.
that in which you put more water in respect to soap, in it the centrifugal and explosive struggle is
stronger, for in no way does the bubble explode faster but its particles are
projected more widely. That in which lye is more saturated, for example the
more soap you put in in respect to the water, the centrifugal struggle is less
in this, so that if such a bubble is broken it explodes very little but it
makes some cracks and the image of a spider's web or of a spider's rich
membrane falls from the tube in the larger pieces. On the contrary, the more of
soap that there is in the lye, the stronger is the centripetal force, so that it
contains itself easily in a smaller mass, expelling the contained air. The centripetal
force is much smaller and hardly observable if you mix a lot of water with the
soap. Whence it is clear that through the diversity of aim
which we have, the matter of the bubble by various means must be tempered.
LI.
Next (50) it must be concluded that the
explosive quality of the bubble depends upon the water; its very tenacity and
centripetal constrictive quality is from the soap, especially since the origin
of soap is drawn from oil. Wherefore even the diversity of oil is seen to make
a durable diversion in bubbles, so that soap in which there is animal fat
usually forms the suggested bubbles more constantly and less swift to explode,
than that which was made from vegetable oil (37). And it is understood why
soapy lye in the bottom of which olive oil is placed after a long period of
period of quiet makes less constant bubbles but more explosive ones (38, no.4.
7)and in such a manner the spirit of wine blended with
lye enlarges greatly its explosive faculty (38, no. 6. 7) which last phenomena
I will explain shortly when I will add that the lye of animals, for example
saliva, diminishes the explosive force and aids the contractive force.
LII.
So the centrifugal force is in
those parts of the bubble which are colored, especially more in the black spots
than in the clear and non-colored and the centripetal force more in the clear
parts than in the colored (47). However the centrifugal force depends upon the
water as the centripetal force is seen to follow from the oil (51). Some
division is made between oil and water in the bubble membranes, and the mixture
is disturbed with lye as soon as that passes into a state of solidity. So that
it might appear more manifest, it is now permitted to indicate briefly the
origin of variegated color in bubble membranes and why they manifest themselves
not always in all bubbles, never in the beginning, and not in all parts of the
bubble.
36.
fluid state and also from the law of gravity to
flow to the side of the bubble and the thickness of the top to diminish
continuously and from which diverse thickness to follow a diverse order of
weakening and reflecting rays: Book II. Optics, part
1, observations 17, 18, following. In which if I seem to contradict a
great man, let the reader take into account that the bubbles have been
considered by me on the plane of another viewpoint. In fact
LIII.
Obviously the membrane of the bubble is
either simple or homogeneous, but as soon as it changes from the fluid state
into a solid state, it is obviously loosely composed of three skins or layers.
The first skin, external, highest, which at all points encompasses and clings
to those inferior remaining ones, is oily and fat, in which the colors
described by Newton appear. This one is contractible, the least explosive, and
secures a flexible elasticity with the two other underlying layers, so that
they are not easily broken by an external force. For as long as this external
membrane is extended equally over the whole bubble, so long is the bubble not
easily broken, as said in the first part of (47). After a brief delay this
first exterior one contracts into diverse places and then in turn the lower
part of the bubble is made thicker while the other two layers persist or flow
away very little. While, therefore, this skin contracts itself greatly and
flows away, necessarily it secedes from the underlying remaining ones,
especially at the top, and to some extent makes the other two bare, which one
sees through the upper opening. However, varied colors appear in this exterior
flowing away skin through its diverse thickness, while the two left underneath
preserve the same color constantly.
The second layer is white, and
it always reflects white light, nor ever shines in other colors. This
The third and inner skin is very clear,
almost to the point of being invisible, the image of a black spot appearing if
it is viewed from the side. It never reflects any sensible color. It is very
fragile and quite rigid, so that if it is irritated (very lightly touched with
a needle) soon the whole bubble is scattered widely dispersed in infinitely
small particles. Also this never contracts itself alone
Or flows away, but is the same wherever you look. It remains solid, colorless,
constant, and very elastic as much on the top as to the side. The whole is
moist.
37.
LIV.
It is clear that the outer shell
is oily because the lye is more pure and steeped with much soap. This external
layer is thicker, more splendid, and also has wider zones of color, persisting
longer. If the water was more abundant in the lye than soap then this outer
membrane is very thin, so that it can cling not only at the top but in several
places it exists and creates a little net. Swiftly it disappears, nor is it so
elegant, nor does it preserve colors so long. Therefore there are born black
spots on the bubble more swiftly and they can be seen more clearly. At last, if
the bubble endures in a quiet way without injury of the air, all of this
exterior oily membrane is contracted to the lower part of the bubble and it
pollutes it in the bottom with many colored oily spots so that with such as are
seen in that layer, one can not doubt that the nature of it comes from the exterior
oily skin.
Moreover, if now this exterior colored by
the interior underlying layers begins to secede, the distinction of these is
very clearly discerned, if this exterior layer is agitated by a breath from the
mouth or another motion of the air. For then it appears very clearly that the
third inner colorless layer is moved by nothing. However the outer layer in
various fragments secedes and a cloud image moves over the immovable colorless
skin with an irregular motion by a strong wind of agitation, nor does it
preserve the order of colors any longer, now ascending now descending it is
applied in various parts of the third layer. That third layer then obtains
throughout the inner spaces of the superior layer in all places wherever you
will, equal to the black and also appears to be of the same thickness. Which phenomena even the illustrious
LVI.
More certainly one can take in with the eyes this secession of the oily
shell from the watery one, if a non-spherical but plane sheet is prepared from
the soapy lye and is placed in a vertical position. For example, if you put a
glass tube or earthen ampoule (which has an orifice at least 6 or 8 lines in
diameter) into the lye and again withdraw it, thus over the orifice of this
tube a solid plane membrane is extended, which shines with no color at first
and a little after it is separated into the familiar three layers so that it is
separated from the sphere of the bubble so manifestly that no doubt of its
thinness can remain.
LVII.
Wherefore also in lye more perfectly mixed
it is obvious that its oily and salty and watery parts
have a more firm cohesion. Thence so that fat can so easily secede from the
remaining elements that no colors even appear. Such perfectly mixed lye is
evident in the lymphs of healthy animals. For if a portion of saliva of a
young, healthy, hungry man
38.
is expectorated onto a glass disc, and is placed in a tube, extended
into a bubble, this is able to be made large and elegant if you blow with
caution, also enduring for a very long time, nor very fragile, however bereft
of all color. On the contrary if such a bubble of saliva freely hangs from the
glass tube, never does it show any color. For by the method above indicated
(42) the thickness of the membrane of these saliva bubbles I have recalled
several times under account, where it is obvious that it also has a tenacity. Some color ought to show forth according to that
second Newtonian table about the thinness of the layers in the colors, but it
never arises. Because in this salavic lye all things are perfectly mixed, fat
cannot secede from the remainder and also that does not show a peculiar colored
membrane.
Also this bubble of saliva has this
peculiarity, that its elastic contractibility that I have named centripetal
force above (49) is much more than the centrifugal force. For never, even if
for an hour or more it will stand, does it explode into that thin shower, but
when it explodes it collapses in cracks as if moving and the image of very
sticky mucus or the image of a spider web falls from the tube (see 51 at the
end). Similarly then the reason is clear why
lye soap to which some spirit of wine is mixed shows absolutely no color if
it is expanded into a membrane. Because the spirit of wine
joins the elements of the lye more closely, and does not permit the secession
of the oil from water so easily (51 &38, no. 4, 7).
LVIII.
Those things which I have
observed about saliva are also true about urine. It is fitting for me as a
doctor to intersperse this medical observation, which quite often experience
teaches to be true and to bestow the prognosis of diseases. Healthy urine
scarcely ever foams, or if some bubbles are born in shaking it, these perish
again very quickly. Healthy urine is truly a liquid excrement and unsuitable
for forming solid parts.
However, in
catarrh afflictions especially of the head and where a healthy lung is changed
into blood, the urine foams very easily and it keeps the foam often for several
hours. This sign is then not only of the excremented parts, but that nourished
lymph water is separated as with urine. This foam in the urine is not always colored,
but very clear white, as I have very often observed.
When however this foam in these bubbles collects the color of iris, it
designates a difficult disease, because it declares that the whole mass of
liquids are mixed imperfectly, from which the saline and fat parts secede, and
they disturb the necessary mixture of nutrition and
of life. Similarly the bubbles which appear in milk, in boiled milk, in
blood sent from the veins, and in well-cooked and fermented beer, rarely are colored,
but always are clear. Whence I conclude that
in these liquids oil and water are more perfectly mixed so that the oil
cannot easily raise a special layer and show colors.
LIX.
It is also seen why in cold weather the colors in a bubble appear more
quickly
39.
and clearly than in the hot summer, because obviously cold water dispatches
oil quicker from clinging together than hot. It was on that day
LX.
Finally
I might mention the colophon for this search about the colors of bubbles, that
Newtonian measure that gave the thinness of the sheets concerning the colors.
He did not show colors of the bubble to be seen in the whole bubble but only
the exterior oily sheet of them. The thickness of the whole membrane which
makes up the bubble and also for all of the layers alike if tried by the method
above (42), it is recalled, is always too thick for
any color following the rules of
279 1/10 grains. Because of the usefulness of this reckoning
it is assumed that a cubic finger of fat equals 280 grains. For such a little
difference that never is exactly demonstrated in my reckoning is not able to
be known. (6) Therefore it must be asked what mass, for example, what part of a
cubic finger do 5/432 grains occupy? Namely however the little portion of fat
which is contained in tile bubble is the mass: 280: 1 = 5/432: 5/12U960 =
1/24192. (7) So small a portion of fat namely 1/24192 cubic finger was expanded
into a thin sheet, which equally at first surrounds the whole bubble. Truly the
surface of this bubble is, as above was shown (42), equal to 12 plus 28/50
fingers squared. (8) If therefore the thickness of this oily sheet is called y,
it will be 12 plus 28/50 y= 1/24192
cubic fingers or 628 y = 1/24192 cubic fingers whence it is had that y= 1/24192: 628/-:: For example y = 50/15192576, and if
divided by 50, y = 1/303851 plus
26/50 fingers. (9) Therefore this thickness of the outer oily layer as long as
it is not contracted or colored
40.
but equally is extended over the whole bubble =
1/303851 fingers (for it survives a small fracture, the deed does not injure
it), which coincides almost with the 3/23: 1,000,000 from the
Newtonian tables. Nor should it have color,(unless a
splendid whiteness) which it truly does not have. For in truth soon thereafter
especially after the inflation is made nearly nothing, or somewhat white, or a
splendid color the bubble has. (10) When after this delay this exterior sheet
in position over the interior watery one diminishes itself, and successively
disappearing descends toward the bottom becoming more thick, then the colors
left are described by Newton in the order in which they are accustomed to
appear. Thus so the colors which are in the Newtonian tables are the first and
best, since the tops of the bubbles are closer than the opposite.
LXI.
Since, however, the whole membrane of the bubble obviously stationary
becomes three layers for the reflecting of color, it becomes a useless task to
explain the phenomena by the Newtonian law. For this whole
membrane is 1/15b24 fingers thick and this thickness almost coincides with the
66/1,000,000 from the Newtonian table. It seems to differ too much from
the thinness that that illustrious man requires in his calculation. The said
Newtonian colors are reflected not by the whole membrane of the bubble but only
by its exterior oily sheet. Wherefore those things which I think about the colors
of bubbles, discussed in 53-60, will certainly be demonstrated. For
often, in danger of error, people
will argue about the thinness or thickness of the sheets saying that
possibly it is the color not from the whole membrane but from its one layer
reflected. Which thing is often done by Newtonian authority and no one changes
it.
LXII.
On the contrary, it can be very much doubted whether any color is ever
reflected in pure water in which no oiliness is impregnated(which water is
certainly difficult to obtain) in a sheet extended either thin or thick, unless
some shows elsewhere or in dark colors
that might be ascribed to part of the saline or the earthy particles
contained n the water. The very black spots of the
bubbles, which are in the watery parts, and the saline parts above are
diminished from entwining, as shown above, and have no color -- not because of
its thinness because many are thicker than Newton shrewdly thinks them to be.
From conjecture alone he thinks the thinness in these black spots to be about
3/8,000,000 fingers, when nevertheless my method given above for examining the
thing, most certainly shows that these very black spots of the bubbles are not
thinner than around 1/17,000 fingers. Besides, these spots are always of the
same color, whether they are born on the crown or summit of the bubble or to
the side of it. Of little significance--they are very black if seen obliquely,
or very clear if seen directly, constantly un-colored, reflecting no light.
Wherefore, one can doubt whether simple water ever reflects any color if it is
considered pure, whether its skin be thicker or thinner, and whether all of the
rays are reflected by the fat alone and the phlogiston especially appears
mixed. However, nothing lacking in the water, color is generated. For if from
lye equal in weight to
1/4 grain
you inflate a bubble of the diameter of two
fingers, one or several black spots arise
41.
in it if the exterior oily layer recedes from the aqueous interior one, as
seen already. If, however, you inflate a bubble from the same portion of lye
that is not more than one finger in diameter, similar spots also arise
perfectly of the same color as in the first, indeed very black and very clear,
in this as soon as the exterior oily layer recedes. But truly this watery layer
which forms a spot in the bubble mentioned before is of a thickness about
1/17,000 finger; the watery shell which forms a black spot in the latter bubble
is less about 1/3,000 finger. Therefore the aqueous layers of them, with
thickness of 1/3,000 finger and 1/17,000 finger, show the same color -- obviously
none, unless very black. Tile chemists undoubtedly have taught this truth for a
long time and demonstrated it with experiments--if primarily there is no
phlogistic matter in bodies, no color is generated, The difficulties with the
doctrine of Newton about the colors of the thin sheets are conciliable in this
way, or at least the limitation of the Newtonian doctrine is approached, but
not mine as I see it.*
*That which is said about the reflection of light from water is not
equally true about refraction. For all water and pure ice breaks up the rays
emitted, as we all know. On the other hand, not all water breaks it up under
the same angle, so it is seen that something is different in the water.
Whoever lives by the
42.
same thing more accurately. However, this clear
ice, as much the blue
believable in the mixture because merely the abundance
of which the proportion and quality will not always be the same. But the cause
of the thing lay in the water itself, where the water contrary to rays of light
either more powerfully or more loosely breaks up the rays than others --
therefore a diverse density, hardly measurable with common instruments,
nevertheless it shows with color. Assuredly fountain water is seen, which for a
long time before , has flown from the caverns of
mountains, to acquire another nature when it is exposed only to air, formerly
not enough known or declared. For the softness and durability of water no one,
at least not correctly, has ever exposed. In truth, the very diverse nutriment
of herbs in the variety of water, and the flesh of fish so varying for the
variety of a large river in which they live, and perhaps the habits of men and
the diseases from the water which they daily drink through necessity, and many
other things are taught which doctors understand through experiment. Namely,
that there are various essentials of waters, and they indicate a diverse
habitation in respect to other bodies. Whoever of the
LXIII.
These primary phenomena are of
water bubbles, for the forming of which there is a certain theory about the
nature of water, They throw in a more certain basis
for this which they have more truly observed. For occupied always in seeing
these things correctly, I have a measure and a counter in
my hands, and so much is allowed me, that I
might be returned safe from false senses.
LXIV.
At first, therefore, while from the soapy
water through the inflation alone there is a solid membrane, none will be that
wish to deduce this solidity from a portion of earth intermixed, or mixed with
a little alkaline salt materially, even if it is true, that the small portion
of the same fluid if mixed with many solids, by these haply it is absorbed and
in some way loses the nature of a fluid. If a lye soap dilute is gently
thickened with heat and the fluid particles carried off into the air leave
solid parts, these wholly near to themselves successively brought to the soap
make a solid mass, it is said that no water
43.
particles are in this intricate mass, because of the
paucity they aren't thought about; Nevertheless as this is done, it is
necessary that the quantity of fluids are much less than of solids. In this
case, however, the proportion of earth to water is insignificantly small, about
1/648 of the total mixture makes (38, no. 3), and the first salt appearing in
the soap makes not more than 1/36 of the whole mixture, so that undoubtedly
from these in no way may one seek the fundamental of firmness. And in such lye,
when it is inflated into a bubble, nothing is added, nothing is taken away, but
that same matter which formerly constituted a very fluid lye and very little
thickened, without any material admitted (unless by chance from the air) is a
solid firm membrane. Wherefore , the principle earthy
materials swimming perhaps before now in the lye must be reckoned at least, but
only for the same kind of mutation through inflation, that is, through the
determined motion of induction. The beautiful experiments of Boyle, which he
has in the Tract concerning fluid and firmness,
also confirm that the firm body effects a change
in liquids only in the direction attempted.
LXV.
The physicists conceive of the matter of
fluid in a different way,
while others look for the thinness alone, figure, mobility of the
constituting parts, as several Cartesians. Others, however, suppose motion at
the same time an actual intestine in fluid wherever it pleases to be necessary
(as Boyle and those who followed him, especially Stahl). It seems to me from
the thinness and figure of mobility alone no notion of fluid is born, but at
the same time a mutual attraction is necessary in these small particles, as
several have recently assumed. That is, as they have a perpetual force to
cohesion, Yet nevertheless they do not cohere,
wherefore a heap of very thin sand or fluid of gypsum never can be described,
because its particles exert no sensible force. This force, however, ought to be
against all areas in un-dispersed fluids, so that the particles composing the
fluid are in a certain state of liberty, and all vicinities it draws in
equally, nor is it peculiarly stronger in the direction against one or another
region.
Truly then a firm body is seen by me to have very small particles, which
are not only in the attempt at cohesion, but truly they cohere. Indeed they are
continuous and they draw themselves to the necessary point stronger from one
side than from the other. Hence they have some common center of attraction and
cohesion, which struggle is not free and un-dispersed, but is determined in a
certain way. Wherefore, as it is made a solid from a fluid, often not another
thing is wanting unless a certain motion of the actual, which struggle formerly
determined the wandering of particles toward one direction.
LXVI.
When a spider
weaves a web in which trap a flying insect is accustomed to be captured and
conquered, he forms his thread from sticky wetness with only attraction, that
is, only motion. For the juice from the glandular pores secreted in the maw
through
44.
a single motion of his body he changes into a
firm thread in a moment of time. In such a moment of time, the thread of spiders
born from liquid even in its thinness is one of the most firm bodies of the
world. Not by any material added or subtracted, nor by coagulation, nor made by
drying, but only the form of the dampness is changed -- namely, so that the
particles in one line attract themselves, on which the spider depends. When formerly, as long as they were liquid, they had an
undetermined and uncertain force of attraction. In the swift moment of
time, this filament appears to solidify not from drying out or wetting down. The
thread is equally firm or solid as first appeared as after some hours or years.
Similarly, one can observe that in several insects.
LXVII.
For in a fluid, so long as the attempted
undissipation of particles against all regions is equal, this can have no
effect, because the effect impedes the effect. The effort of trying is
equalized, to the point truly that fluids do not cohere for the reason that the
force is innate, from the theorem of learned Hamberger in Physics, #
193. Wherever you wish the force in addition acting in the dampness (for
example, the force of gravity) this effort within the fluids is strong to
overcome, whence the fluid itself is not able to cease, from the Aristotelian
definition that it does not have within itself a sufficient reason for its
form. From which principle -- the equilibrium of fluids
all rules of hydrostatics depend. In truth a
solid body has one common center , or certainly some
common center of cohesion. That is, it has a first point or some primary point
against which all of the particles tested are arranged. Wherefore, formerly no
solid body was observed that did not have some structure in its smallest parts,
that is, a peculiar way of cohering to itself, and thence following a peculiar
figure. All salts, all stones, all sulphurs, all minerals, in their least
parts, are crystallized. Metals, in addition, are stratified or foliated in a
peculiar way, as appears from their fractures (see learned Cramer in his
example). All glasses consist of long crystal filaments which concur in some
single point, as in a glass tear.
Learned Feaumur (M.A.R.
1730) adds a singular organism from the least earthy particles; water itself,
when it is changed into ice through cold, solidifies not irregularly but in a
kind of crystallization. And I say nothing about vegetable and animal fibers,
because it is a well known thing that they all have their own structure, and if
I add several now I would seem to wander past the limits. On the contrary truly
the smallest particles of a fluid body, however many were able to be
investigated, exhibit no regular and constant figure. That is, they have no
structure or constant way of cohering, but nearly all of the figures are full,
unless you wish to adduce that perhaps a globular figure of liquid fat is dispersed
in the water or Leuwenhoek's globules of blood, the figure of which depends
upon action from the vessels and other external causes, nor can it be had for
a constant because it is accustomed to be much varied through the variety of
vessels and motion. And in this same bubble, which I have described formerly,
the single membrane parts constituting some peculiar order preserve a sight for
the eyes. The outer shell is obviously oily, the inner one is watery, between these in the middle is the saline one. And it is
obvious to the sight that here where the incomparable Stahl predicted, and
correctly
45.
expressed, if bodies of diverse nature be mixed, they
draw them selves to one side. Obviously water of itself does not attract oil,
rather it flees. If however first some salt of calcium is joined with oil, then
water intermixes with the salt or from the association with the salt also draws
oil and associates itself with it. Certainly salt is a medium and between the
others joins these heterogeneous bodies.
LXVIII.
As such an attempted direction in fluid is
not always completed, it is necessary that the external motion appear to
resemble the threads of spiders in the example brought forward of the soap
bubble. Once a flow is within something, this determination (and for that
reason) becomes a solid, the spirit movement or force for seed. Chemical
vegetations, the soot arising from mixed vitriolic oil and spirit of wine if
the spirit of naphtha is made frobenianus, the Helmontian morsels, the
growth of vegetables and animals, and several similar begins things teach it
most clearly. The glue of bookkeepers
commonly begins to putrefy contracts on the surface a
wooliness or mould if it is diluted in a sufficient abundance of water
and exposed. That is, the whole surface extends itself into long white
filaments, often perpendicularly erect. These fibers are equal in length to
1/12 fingers and more in length in some. Within they are empty as the microscope
shows, and on top they have an empty, clear globe or sphere, so that such
fibers with their spheres represent a headed fungus. Several botanists believed
on account of such a wooliness, which is born in putrefying bodies, that it is
a peculiar species of plant born from its seed. However, I certainly persuade
myself that these little fungi are born by mechanics, not by seed, through the
said equivocal generation. For some say that I might see with my own eyes the
rising of the fibers from the said glue. Nor in another way is it generated
unless because certain fiery, volatile particles (because of their lightness
about to disappear into the air, were included in a spherical membrane of glue
and while it escapes with this little sphere it draws a strand with itself.
This strand stiffens in this drawing out in a moment of time, and makes a steam
of the new mechanical plant. However, the little sphere ascends so far until
either the gravitation added to the led-forth strand, or its tenacity, impedes
a higher ascension. Then the little sphere subsides and makes its head clinging
to an erect strand. I have seen these plants born without seed.
LXIX.
Another thing that was decided
from the water bubbles is that water in motion alone is converted not by this
manner into a solid and firm body, but into an elastic body, without fire,
since water will be bereft of all elasticity as long as it is a fluid.
For soapy
water when first it is blown into a bubble can hardly bear without rupture the
varied mutation of the figure, which, if the changing cause recedes, restores
itself into the original figure. But also it has two forces, one explosive and constrictive (depending
upon the oil), the other explosive and projectile and very large, arising from
the water itself and not from a state of mixture, just as I have explained this
phenomena more
46.
widely (47-51). For oil, because it contracts
itself on the surface of the bubble and since it is flowing it cannot really be
called a solid, so makes much less an elastic explosive membrane. Thus, the
true solidity of a bubble is made from water, as well as its elasticity.
LXX .
Which observation is
corroborated by the phenomena of Stahl especially, who makes water the author
of nearly all elastic expansion in his CCC observations and here and there
elsewhere in his works. For if from the fiery expansion alone of water in the
inflation of air a very wise man understands this elasticity
to be analogous by no means, the faith of invention can be considered as
now above I have said (11). But in truth Stahl first says that water changed in
elastic inflation, the body is not made more fluid, but it has a distended form
(as the expression goes) and that same distended form not by way of great heat,
but also
without sensible fire is in the occupation of fermentation and much 1-more
in effervescence and in the water opposite to the salts, unrestrained it is
acquired with conflict. For that same sensible sense recognizes that in these
operations water is in greater bubbles visible, as smaller invisible, and it is
arranged in solid membranes, which because of their solidity are made bereft of
the solution, so the oily parts as the saline diminish from their interlacing, in
which they were before mixed. However, new mixtures agitate all the liquid with
an inner elastic motion, hence new joinings of the elements, new divisions
arise. Wherefore the primary instrument of fermentation and effervescence is
water, where its particles are made elastic and acquire a solid stretched form.
Obviously, water acts in two ways in fermentations: first, where it is a fluid
it dissolves, disperses, disjoins, mixes equally; second, where it is arranged
in part in solid elastic sheets, it moves, grows warm, produces internal
motion, disperses, compresses, wastes away, and coagulates.
LXXI.
And in this
same phenomena of the watery membranes a new possibility of elasticity is born
in the Aristotelian axiom, from the conversion of water into air. For what is
air? Certainly not liquid, but the foam of liquid. Air
is a clear body. If it is pure it reflects colors, of:-which it is in all ways
bereft, plainly as pure watery sheets (62). Air is a compressible body -- that
can be said about no other liquid, but well about the sheets of water of which a spherical body
(that is, to the greatest capacity) can be changed without rupture into an
oblong, narrow, irregular figure (that is, into one less full (45). Air is a
body highly and eminently elastic. That again is true about no other liquid.
Concerning water, however, it was shown (47-51) to acquire a similar explosive elasticity, especially its least particles cohered to
themselves, and make a solid sheet. Air is a body that can have and retain for
a long time an unequal surface even if it is not moved. That is, its surface is
not always equal and parallel to the horizon. That again holds about no other
reposing liquid, but well about the foam of liquids. For the barometers show,
in diverse places and in the same place at diverse times, that the atmosphere
is now higher, now lower, and a mountainous figure of clouds declares the
same. Air is a body which destroys all this elasticity, and rather acquires a
more constricted faculty, when phlogiston is mixed with it, as is plain through
the beautiful experiments of the venerable Hales. For phlogiston brought to
purer air thus is bound as if it might disappear and the
47.
sense does not discern what is made from it.
Similarly, this is what is seen in the watery sheets of bubbles of which the
explosive elasticity is impeded and is changed into a centripetal elastic
contraction through the surrounding oily sheet (46, 49, 51).
Air is a body easily broken in the form of foam and easily destroyed, and
which, as it is conserved, must be generated anew daily. For it is incredible
how much air at every moment of all the earth's surface is destroyed and truly
consumed through the respiration of all the animals and plants, through all the
effervescence and fermentations, through all the fire and flame, through all
the rays of the sun. For if one might wish to make this
calculation, he easily demonstrates it to be incredible the abundance of air
which at every moment is thus destroyed, but nevertheless the quantity and mass
of the atmosphere is preserved about the same. Whence
it is necessary also that an incredible abundance of air must be generated anew
daily. Whence however and from what body is it generated, if not from
water, the nature of which in so many Phenomena conspires with air? And in what
way is it generated from water if not that of very small particles of water,
which, as long as they constitute a fluid, do not cohere
to themselves. But have an unsteady trial and
they will begin to cohere to themselves and effect solid designs, of which the collection is air.
These airy spherical designs are the form of bubbles. I do not determine it,
nor is it necessary. For as art can make a spherical solid from water, while we
form a bubble with inflation, thus perhaps nature can have other methods,
changing water into elastic sheets not spherical but otherwise figured. For a
spherical figure of the least airy designs can be determined because of several
phenomena.
However, who ever considers all
these things with doubt for them, joins the known phenomena about the
generation of inflation in air greatly similar in the wind machine and other
chemical operations. So it seems to be probable that the thought of Aristotle
almost overcomes doubt.
At least it is easily seen that
the vapor of water, since it is elastic, consists in solid sheets, and plainly
it has other effects than that same water if to the same degree of heat, as
they say not so much with medicine but with several mechanical phenomena.
LXXII.
The third consideration from the membrane of bubbles is born to me about
the magnitude of the smallest particles of water. The particles constituting
water are small, nevertheless, they are not seen to
have an incomprehensible thinness, which is attributed to them here and there
in the physics books. When the 1/4 grain of lye that I
have above described is inflated through a suitable tube into a bubble, this
can be extended until its diameter equals about two
If, then, you inflate another, as if you
wish to repeat this bubble larger, you stretch it in vain, for soon the bubble
is broken and is dispersed in every direction in particles or almost infinite
to the sense atoms, as I have recounted in several places (47, 42). Whence, it
is clear that such amplitude of the bubble is the greatest expansion which is
possible in lye particles, for they do not bear a greater expansion without an
end of continuation. When the above will have been demonstrated, this explosive
quality of the bubble
48.
depends not from fat nor from the mixed in salt, but from water (50, 51). The
water particles are seen to be so small, that when the diameter of the bubble
equals two fingers, they cannot extend anymore. There are, however, in this lye
which was used, the greater part (8/9) of water and 1/9 of soap (38, no.3), therefore,
in 1/4 grain 89
of lye, from which the bubble is inflated,
there are 1/9 grains of water. These 1/9 grains occupy a mass of 1/2799 cubic
fingers. And they are extended in a membrane the surface of which equals 618/50
fingers squared (42). Wherefore the thickness of its membrane
will be 1/17577 finger.
Therefore the thickness of this inner membrane is,
obviously, 1/17577
I understand, however, that these particles of
water are in the state of solidity and elasticity. For perhaps the water
particles, when changed from the state of fluidity into a state of solidity,
can change their figure a little, for example from spherical into oblong,
wherefore from this reckoning I considered that while obviously I have measured
water particles in their state of solidity, it can not fully be concluded about
the same particles in the state of fluidity. I also believe that the particles
are smaller by a little than those I have determined, because the diameter of
the water bubble, on which I took a measurement, is rather a little more than
less from two Rhine fingers, but not enough greater, so that it can be assumed
to two fingers without great error. And also, nevertheless, no hope is that
one particle of water in any way ever can be seen by us through a microscope.
For such a microscope is not yet invented, because the diameter of this
particle is 1/17,000 fingers from other similar particles which it distinguishes
perfectly accurately. Especially, however, the perfect clearness and homogenous
nature of all the particles seems to permit almost that they are discerned by
themselves by the sight. Since a red drop of blood from the measure of
Leuwenhoeck is around 1/1000
LXXIII.
By the same method also the smallest
constituting parts of oils and fats can be determined. For
because the outer later of the soap bubbles is oily (53-56) and of the same
amplitude with the same bubble, it touches this whole thing. But, in
truth, in 1/4 grain of lye, from which the bubble consists, there is not nearly
5/108 grains of fat (38, no. 3) and this outer shell does not have a thickness
larger than 1/303851 fingers and in
49.
such thinness nevertheless all particles extend themselves so that a
solution of continuity is not made. It follows that very small parts of fat if
not smaller, nevertheless are not greater than the diameter of one particle
which is 1/303851 finger. Wherefore, the diameter of one water particle to the
diameter of one oil particle or fat is about 30 to 1. From which thinness shown
it is understood why oils are much more penetrable than water, and they go
through canals from which water is excluded.
LXXIV.
Nor does the viscous ness oppose the greater thinness which I assigned
to oil particles before water, which is observed more in oils than in water.
For this partly follows from the same nature of thinness, that while subtle
bodies have a greater proportion of surface than thicker ones, they are more
prone to cohesion; partly in truth from heterogeneous earthy and watery and
salty masses which commonly cling in abundance in oils and overthrow the
thickness of nose, it is rightly deduced. For pure oil set free from
heterogeneous masses such as alcohol of wine and sacred oil were thickened or
at least governed, But if they did not supersede the water in fluidity,
nevertheless they equaled it.
LXXV.
It is certain that oil in some way for the
greatest part can be truly changed into pure water, not only by the way of
gentle flames burning but also if quicklime is added or another matter which
draws phlogiston. They are distilled, as the common experiments of Stahl and of
others clearly show. It is also certain that alcohol of wine is made from
common water through fermentation, if some phlogiston is added. If therefore
this is true (that from the marked thinness of oily parts before water I beheld
to be able to affirm (73) ), it follows necessarily
that if oil ought to be made from water, smaller particles ought to be made of it
than were before. That is, so that they are worn away, divided, and made more
subtle. And on the contrary if water is made from oil,
or oil should return in the form of water, it will be necessary that the tiny
particles are again thickened, condensed, coalesced and increased in greater
masses. It is seen therefore that oil is water rubbed into least parts as if
alcoholized. The instrument of this attrition and alcoholization is seen to be
the motion of the prime fire, obviously of purest phlogiston approaching.
LXXVI.
Because the least water particles are by no
means indivisible, or atoms,
nor are they some element of the originals nor a body first and
very simple, as also Aristotle disputes against Thales. For an atom or very
simple and primary body cannot be divided further or worn away. But rather the
least water particles are masses composed of its own kind, determined in
magnitude, combined at length
from other thinner corpuscular elements, dispersed in it also. These smaller
corpuscles, as they can be called in respect to the element of water, plainly
necessarily have another nature than water itself, and can be the marvelous
cause of phenomenon to which the physicists are accustomed to assign other
matters for cause.
LXXVII.
50.
The fourth watery membrane of the bubbles
has its own pores and those of a determined magnitude. Especially when it is
inflated, a great part of the inflated air passes away through the pores. For if you blow violently your breath can be seen across the
bubble. Therefore the bubble cannot contain or confine all the air, but
part of it passes through the pores. Finally, if you fill the bubble with smoke
(43) very little of this passes through the pores of the bubble but is
restrained within the bubble. I considered whether the bubble and the smoke
have a force for fleeing themselves by turns, and why the smoke cannot adhere
strongly to the bubble, also why through the pores it cannot pass. But truly if
similar outer smoke is admitted to the bubble, that is, drawn from the bubble
also as from every solid body, so that on the whole surface it is moved around
the bubble, as if in flickering about, nor does it flee from the bubble.
Wherefore it is necessary that the particles of smoke not from the force of
fleeing but because of magnitude alone are not able to transpire the pores of
the bubble. Then if a clear bubble not filled with smoke thus you place so that
beneath it you can put a lighted lamp, you will see a black sooty smoke from
the flame of the lamp strongly surge into the bubble from the outside to
penetrate and to cloud the air contained within. Therefore the pores are large
enough to transmit soot. Therefore since the pores of the bubble membrane are
larger than certain particles of air and than particles of oil , soot is
admitted, but it is smaller than the particles of vapor born up from dry
vegetables and than vapors expelled from the lungs of a healthy man in winter
time.
LXXVIII.
The consideration is needed
besides that a bubble is not made unless from one drop of lye, certainly from
such a drop which does not fall from the tube through an
appropriate weight, and which by the variety of the
tube can be now larger now smaller. For if in some tube you take in addition
more of the lye than can freely ascend perpendicularly upright (however, it
does not ascend higher than until the quantity entered is equal to the drop, as
I assume from the observations of the most learned of Men, Muschenbroeck and
Hamberger) then this superfluousness cannot be blown into the bubble, but
successively it flows over the membrane of the bubble, so that it is collected
beneath in a peculiar drop, hanging freely from the bubble. And also this
descent of the superfluous lye is visible to the eyes, because it forms threads
and flows in small rivulets. That phenomena without doubt moved
To which is added that if a
hemispheric bubble is raised over that same surface of the lye, then around the
whole of the bubble on which the lye touches is a perpetual motion. For from
the lye certain particles because of the force of adhesion always ascend on the
solid membrane of a bubble. others descend and show
some kind of circulation which is not observed if the bubble is removed from
the lye. The advancing thinness of the bubble indeed ought to be made in the
opinion of
51.
the autopsy wholly denies, for the black
spots which arise are not successively made blacker, but have a sharp and
abrupt margin, not only on the vertex, but even arise to the side, and in a
bubble which has no superfluous lye, no descent of the fluid is observed unless
the fat of the outer membrane. This and other phenomena I have explained in
several places .
When therefore in this cohesion which the drop exerts against the tube
from which it hangs, it has some relation to the magnitude of the future
bubble. Especially it is seen that this test of cohesion makes a mode or
measure of cohesion and solidity of all parts of the future bubble.
LXXIX.
At last from all these things which formerly
were handed down about a water bubble, I conclude that the Helmont experiment
about the growth of plants (and of animals too) from water is not only very
true, but also the way in which such nourishment is accomplished is clear.
We formerly knew that there are two designs,
from which nature arranges in every living body, namely in vessels and canals.
For from these all things are composed, and by these same designs as before the
diverse mixture of matter from which they are made, and various of these in
conjunction with the lung here, the liver there, on that side the cerebrum and
gland or flesh, here the wood and foliage of the tree, and petals of flowers or
fruit and bark, and arms of polypi and the head of fungus arise. Whatever is solid in a living body, when finally we
approach, is found to be always either a vessel or a canal. I make a challenge
to all very wise men in search of these, that they
work with various skills so that they strip off the hidden work of nature.
Whence therefore, it was
shown above that some kind of grease and salt come from simple water, with the
motion as external as internal. On the other hand, the vessels or solid bubbles and the canals are
excited very easily. No doubt remains but that nature can make it similarly.
In the second place the prime matter from
which is generated every animal and every plant, whether or not it is merely
gelatin or mucilage mixed with much water?
This however is not soapy lye (as Boerhaave
very correctly was wont to describe it) but namely is from water, oil, salt,
and a little earth. The Origins of the solid parts of animal and vegetable
bodies, particularly soft ones (for earth is abundant in bones) and before
dried up (as the water which does not pertain to the solid but clings in the
cavities of these is expelled), are accustomed to contain these things in
almost the same proportion as in lye soap.
Nor does it oppose that the
bubbles about which I spoke are much more frail and unstable than the smallest
designs from which living bodies consist. For who seeks great perfection in the
work of man? However, nature grows for a long time the matter and with much
more intimate mixing, especially however in small working and insensible
52.
things, and the exceedingly little designs for exciting
and in another method concerning the constancy. By which the smaller is the
soap bubble, the longer it lasts. I blew up the bubbles through the glass
capillary tube, namely the thinnest which can be had. Its diameter was around
the sixth part of one line. These very small bubbles lasted to the third day in
free summer air before they disappeared wherefore absolutely a much greater
constancy can be expected from bubbles and canals of the smallest nature.
I am confirmed in such a thought if we
consider the whole work of nutrition and how that repetition of chemicals is
employed in a high degree in solution and curds, and the marvelous elastic
vitality of fibers, which nothing can produce from earth, from oil alone, from
salt alone, from these three mixed in any way, and several other phenomena
which I omit here, since I reserve them for another occasion, when, if God will
be pleased, I will publish experiments about some work in nutrition, in
whatever diverse ways from all others formerly tested of the sort.
LXXX.
Formerly, with the phenomena resulting which occurred concerning the
soap bubbles, I strove to demonstrate that common water is capable of various
forms, especially that can be transformed into a firm and elastic body and in a
certain light transaction namely with the determined motion only, especially if
it contains some fat. I believe also that several physical phenomena may be
explained more easily than formerly was able to be done when this continuous
natural conversion of a fluid body into a solid, not of an
elastic into elastic, thinner into a thicker and vice versa, is called
in support. And it is haply one from the causes why in physics and medical law,
motion and the mechanical doctrine was applied so often formerly (unhappily,
without fruit),because only action, and not reaction,
of the parts was considered. For the difference is great whether for example
some globule strikes in fluid particles or solid, or the same particles which
now sustain the pressure of a
fluid, either remain fluids, or with that same pressure cohere in a moment of
time, are made elastic, and also change the method of reaction. For very
devoted mathematicians after all applied work to explain the things, finally
avoided the hidden action (in respect to mechanics), namely fermentation,
effervescence, conflict of small particles, and similar ones collected.
Without which, to be sure, hardly anything in physics can be understood,
as the glorious chronicles of Borelli. Bernoulli, Keil,
and of other equal men show. Wherefore, this new mechanism, as the great
Leibnitz is accustomed to call the hidden mechanism, is investigated eagerly,
more than formerly. Now one thing is important to me, namely the conversion of
water into a very dry
body. And I spoke about the analogy of earth to soot briefly, to explain a
little more accurately that which B. Stahl now shows about soot.
ABOUT THE
CONVERSION OF WATER INTO SOOT
LXXXI.
Isaac Newton, in the optical
considerations (query 30), says that he knows no body that is made less apt to
brilliance than water. Nevertheless, if by the method of
53.
Boyle by repeated distillations
it is converted into fixed earth, that earth made firm with sufficient fire is
able to give off a light equal to another shining body. Some shame is
suppressed at this proposition of Newton, when I think that the greatest man at
his work done by night did not see the flame of his own lamp, which is nothing
other than shining water -- water not yet changed into earth but joined more
intimately by the fundamental principle of inflammability. Also, the great
Hamberger in Physics, # 313, thinks that terrestrial particles are
required for flame, because by no means can water and air glow, because of less
specific gravity. Here I write with the favor of a very erudite man Manius,
that he admits this latter proposition without demonstration, when rather it is
certain that the degrees of heat of ignited bodies do not hold themselves in
proportion to that of specific gravity, for iron (as an example) ignited glows
more than ignited gold, and wood coal glows more than, if you please, ignited
stone, even if the gold is found to be heavier than iron, and stone heavier
than coal. On the contrary, oil and the spirit of wine, a lighter body than
water, can nevertheless glow. Whence the proposition of that
distinguished man without doubt is assumed out of kindness. The same
learned Hamberger in Physics, # 536, in the Scholium wishing to test
that for glowing cold air is always required, pulls forth pine wood which is
extinguished if it is held above the hearth of a furnace. That example
nevertheless proves nothing, because a wind is in the hearth; and the pine wood
in such a vehement wind and great motion of air and also with the cold is
extinguished. However, the same, in the wind of a furnace where the air is much
hotter, burns well, and also not only temperature but the motion of the air
extinguished the pine knot.
LXXXII.
I chose a hard porcelain vessel (not
something less of a firm vessel which may leak of oil swimming through the
cracks) and in its middle a little
wick from a cotton tree I secured with the aid of perforated copper pieces.
Then I poured in a sufficient portion of old and very pure olive oil. I built
up the small flame with the kindled wick and as well as I could burning
equally. And I knew by repeated experiences that within 15 minutes from the
beginning, that is, within a quarter of an hour, through a flame of this
magnitude always 25 or 26 grains of oil were consumed. For because the whole
lamp with all its contents I always weighed before I kindled the wick and after
the flame was put out I weighed the same lamp again, it is easily clear that I
will be able to know the quantity of lost oil accurately. If I make a larger
flame, not everything happens which now I tell.
LXXXIII.
I observed an opaque nucleus in the center
in such a moderate flame, namely the black wick, whence I knew that the wick
itself, except for a few adhering particles of soot, will not shine. Around the
nucleus a globe was revealed in a sharp point above, all fire but of different
color. Into this ignited globe except some peculiar little sparks I saw the
splendor of the whole flame, which were brighter and
more splendid than the parts of the flame remaining. These sparks appeared now
more abundantly, sometimes fewer, now none. Therefore these sparks were seen to
consist from other matter than the flame itself. Especially an
abundance appeared if I touched and stirred the wick with an iron file.
Whence I concluded that these sparks
were perhaps earth particles lying concealed in
the oil or separate from the wick For the whole flame does not consist from
earthy particles. I persuaded myself more firmly
54.
because I knew that oil is not without a little
quantity of earth, which can by no means nourish and preserve such a flame for
a long time. Especially if I thought that true alcohol of wine to be free from
all mixed earth, nevertheless it was very sufficient for the nourishment of the
flame.
LXXXIV.
I covered this moderate flame with a great
glass funnel, thus so that on the periphery of the funnel there was sufficient
space through which the air necessary for conserving the flame had free
admittance. The tails of the funnel now represent a little hearth. I washed
another long glass tube and placed an alembic on its summit, on which I hung a
little glass in front of the vessel's beak, but without daubing with mud so
that the free transit of air is withdrawn. Certainly without which the flame
was suffocated. So thus I first ordered this apparatus. I saw the higher parts
of the tube and the alembic with the vessel, which were before very dry, made
damp with many liquid drops. Liquid thus collected I found to
be very pure water, with neither a taste nor odor was I able to
distinguish in it something either of salt or fat. Whence it happens
that oil burning on a gentle flame is changed into water. The quantity of the
water was different according to the height of the tube and of the flame. In
which the less flame and more water equally, but especially in a higher tube.
For if this is short, then the ascending water, not enough refrigerated,
departs into the air visibly under the form of vapor through the beak of the
alembic, so dispersed that it could not be captured in the vessel. I arranged
my apparatus
thus several times, so that almost three parts of oil consumed under the
form of very pure water I recovered. Meanwhile many sensible vapors had escaped
from me under the funnel and through the joint of the vessel, whence I conclude
deservedly that almost all oil, with perhaps a small portion excepted, if it
burns on a slow fire, is changed into real water. Now Stahl has observed the
same thing and similarly this happens with the spirit of wine, namely that in
inflammation it is changed into true water. Boerhaave from others and
especially Stahl describes it amply in his chemical work. Wherefore no doubt is
it why flame is burning and shining water, and it is
understood why bodies apt to ignition, nevertheless generate no flame if they
lack dampness, as dry wood coals.
LXXXV.
If
in such a flame which exhaled very pure water I placed whatever hard body you
wish, for example an iron stick, so that the iron stick clearly touches the
flame itself and nearly divides it, suddenly then water in the tube and alembic
ceases to ascend. Rather in a moment of time a thick
copious black smoke, of which formerly no trace approached, the form of clouds
through the glass tube also in the alembic, from the alembic through its beak
into the vessel, and from the vessel through the cracks of the joint flies into
the air. All the internal surface of the alembic and vessel and the highest
part of the tube, especially the side to which the smoke greatly rushed, were colored
with a very dark color, and an immoderate abundance of very dry soot is
collected there. Whence I understood that from a slight cause, namely from the
contact alone of the flame on some hard body, that same matter which elsewhere
makes up water, is changed into very dry soot.
55.
LXXXVI.
During the kindling of the soot not a trace
of water is observed to ascend from the oil. So that I might investigate that
more certainly, I removed the alembic sometimes and placed a dry piece of
parched clavellati ash in the glass tube. For since this salt draws
water most easily, I thought for this reason to know whether it is able when a
watery dampness at once ascends with soot. But this morsel of alkali salt turns
out black by adhering soot. However, it remains wholly dry, unless after a
space of nearly two hours, in which wearied of the labor, the iron stick
removed from the contact of the flame, I restored the freedom of the flame, so
that it might burn without impediment, for then quickly that salt collects some
dampness. However the salt long enough removed from the flame could not be made
very hot, and I add this so that one might not think that the salt drew water
because of heat collected. Rather, evidently, from this it is proven that the
same matter which in other circumstances gives water here constitutes soot.
LXXXVII.
Therefore, it is quite evident
from these observations which are very easily repeated that for a variety of
little circumstances, oil can be changed now into water, now into soot, that
is, into a kind of earth. And since the same matter is made of flame, and of
evaporating water and of light soot, it is permitted that the external forms
differ
greatly.
LXXXVIII.
The cause of such a conversion of water into
soot is marvelous in its own simplicity. For flame without impediment burning
gives pure water. However, if the same is impeded in flaming through whatever
hard body you wish, for example an iron stick, in its motion, the water
particles binding to such a hard body and by their rotary motion suddenly
ceasing are made into soot.
LXXXIX.
Nor is it necessary that that hard
body which touches the flame ought
to be cold (85. For if
the iron also is very hot, namely that that I made heated very brightly over
the coals, and I moved it into the flame likewise, it seemed to me that a
greater effect followed. Namely soot was then seen to be generated more
abundantly. Wherefore that wick if it is too long, collects soot generating
from water, as everyday economics teaches in practice -- that, if the candle or
lamp gives off an annoying sooty smoke, the wick is cut off with forceps and
thus the annoyance of smoke we are accustomed to deal with. For if the wick is
too long, it divides the flame surrounding it in the same way as if an iron or
other firm body had been placed in the flame, and also makes soot from the
flaming water. Wherefore it happens that some soot always adheres to the side
of the wick, which successively either cut short or separated with the
forceps, as the candle makes more clear. And also
these sooty particles hanging and flying around the wick are without doubt the
cause of the diverse colors which are observed in the flame around the wick.
LXXXX.
For it does not swim for a way in the air
and is lifted into such a sooty existence, but it adheres abundantly also on
that same iron or hard body or wick that cuts short the flame. On the other
hand on that same very heated iron put into the flame soot adheres,
56.
neither from such heat as is in burning iron is it made volatile, especially if
it touches the surrounding iron. Wherefore if I place a very wide iron sheet or
polished copper in place of the iron stick in the smoke, and horizontally place
it thus above the flame so that the flame touches the sheet, then to that sheet
in a brief space of time a quantity of soot is accustomed to collect. Never,
nevertheless, even if I might use various systems, could I place the thing so
that I caught all the soot born from the flame, but a great part was
transmitted in the form of black clouds beyond the iron sheet, and flowed into
the air with great swiftness. More often nevertheless for a brief space of time
I collected such of smoke on such a sheet that more than a third part of the
oil meantime consumed does it yield, thus so that when those many black clouds
which pass by I count with spirit, I conclude with little difficulty that
almost as much soot has ascended as of the oil was consumed. Nevertheless it
was noted also that when Only through soot, the oily
particles not changed were accustomed to ascend and give out a fatty soot, from
which afterwards if the oily particles are separated we shall have pure soot.
It is done so that if the soot of such a volatility is made wet with the best
spirit of wine and is formed into small globules, and these also are exposed to
a large fire in inserted twisted glasses, thus the oil is expelled and in the
bottom very dry, similar to parched earthy bodies, nevertheless black, pure
soot remains.
LXXXXI.
It is known from the very interesting
observations of Mayov and Hales that from flame, especially when it makes soot
and smoke, the air is deprived of its elasticity and is as if consumed.
Therefore I thought strongly whether air forms soot to that extent that it is
attracted by fire, and also not from water but from air the soot might be born. Therefore I placed my lit lamp upon a very
small table in a pan full of water, and I covered it in the Hales method with a
large enough inverted glass cylinder. When therefore I had stifled the commerce
of the lamp with the external air, that burned not longer than 53 seconds, and
in that time it consumed almost no air, after which truly it was extinguished
and some black smoke was seen to emerge. The air also began to be consumed,
that I knew from the ascent of water into the cylinder. I lost 1 1/2 grains of
oil from all this apparatus in the time indicated, namely 53 seconds, in this
closed place. Which quantity was probably converted into a watery vapor before
it manifested itself in soot. However, after the flame
went out then there was such a small portion of soot that it did not take
measurement; meanwhile for :such a little soot brought forth through ascension
12 cubic fingers of air were freed and consumed, as I concluded from a similar
mass of water drawn into the glass cylinder. However the 12 cubic fingers of
air weigh about 3 grains, but this soot after the extinction of the flame issued
very small and is by far beneath the quantity of one grain, wherefore by smoke
the air is deprived of a certain elasticity, but it
does not depart into soot. For in physical things the cause ought to be equal
to the effect, because I cannot say that three grains of air consumed give
forth a much smaller quantity of soot. Therefore air is deprived from elasticity
by soot, but it does not constitute that same essence of soot even if the soot
generated is seen to come as the necessary condition.
57.
XCII.
However, I know much more
certainly that air is not changed into soot, because other burnt bodies are
given which destroy air very fast and they also do not generate soot. Pure and
rich coal, for instance, of smoking Celtic sod or peat does not show soot, even
if it destroys a significant quantity of air in a brief space of time and
deprives it from elasticity. For if I arranged a little particle of this
burning Celtic peat well parched, thus so that it doesn't breathe out the least
more odor and it is lacking from all the least sensible smoke, for example by
the Hales method to weigh of one twenty-fourth
an
ounce under an inverted glass cup, this small particle burned within 20 minutes
from the first and it consumed more than 24 cubic fingers of air, namely the
third part of the air in which it was enclosed, and the consumptor suddenly
ceased to burn, and after it did no longer burn it also quit devouring the air,
and also it was made into oil. And neither nevertheless did the peat coal emit
any soot. Wherefore the air consumed in the flame is not soot, but a certain
other matter, which Helmont named Gas and it is not yet well enough known.
However, the peat coal did not generate soot because of the lack of water, none
of which is seen in this dry inflammable body.
XCIII.
Similarly some small morsels of
beech wood coal burning well, without smoke, of which the weight was not over
half a drachma, enclosed in the same glass (92), were put out in a short time.
Truly they consumed the air not only by the way for the long time they burned,
but also after extinction, thus so that by these within 15 minutes 20 cubic
fingers of air were destroyed without any sign of
soot. Therefore, soot is not made from consumed air.
XCIV.
However, a tallow candle made from animal fat, plainly as the flame of
the lamp from the oil of vegetables in the same glass in a short time put out,
consumed the air until after its extinction. And also nevertheless the flame of
the candle, also as long as the flame lasts, the
process continues in free air which one can nearly see destroyed or consumed.
For when a curved glass capillary tube, the diameter of the cavity of which was
around 1/40 of a finger thus I applied to the glass cup, so that through it
some free air could
enter the closet in the cup from the remaining
air, nevertheless this tube did not detain a moment the extinction of the
flame. And when another tube similarly curved, the diameter of which was 1 1/2
lines, I applied in the same way, it retarded this
extinguishing of the flame for a time, nevertheless not considerably. From
which separate thing it is clear that the commerce of free air is necessary for
the flame, nevertheless not to generate soot.
XCV.
I understand however that the flame from the
spirit of wine departs from the air into soot. For the spirit of wine burned
and also under an inverted glass cup similarly burning consumes the air in the
same way as the tallow candle or lamp, and also nevertheless it is very well
known from the that no soot is generated from the burnt
spirit of wine. From which arguments (91-95) it is clear enough that soot is
born not from air, but from that same water which a little before was oil, and
which is almost all water, and in truth gives up water or is changed when the
flame burns without impediment. I beg
58.
pardon, however, from the readers because I
have been so long in these disclosures, for this objection as to whether
perhaps a dry body of soot is generated not from water but from air and
particles of the atmosphere, wholly had been abridged, so that I was more
certain that soot arises from that same matter which is water under other
circumstances.
XCVI.
The cause of
which, however, why the spirit of wine burning does not give off soot, when
nevertheless it is made of a kind of very subtle oil? -- no
other than because of the paucity of the element phlogiston in respect to the
water, the spirit of wine flame does not heat sufficiently. For this flame is
not very hot and the heat of boiling water is nearly larger, as is known from
common and economic experiences. And this heat
does not suffice for water thus changed so that from it a body is made dry. I
prove it by two phenomena: first, because a drop of good spirit of wine, placed
in a very hot iron spoon and there burned, generates some coal or soot, see
above (17,18). For after very often repeated tests
this was always seen by me consistently. Second, because if some spirit of wine
is added so that it can build up heat, that is changed
into true and copious soot. We have an example in naphtha liquor from that very
celebrated Dr. Frobian, that which once Boyle mentioned, that shows the changeable
dampness in a solid body, see for example The Skeptical Chemist
and, much more accurately about the same liquor, the learned I. H. Pott the
chemist, writing very extraordinarily on the dispersal of wine acid. For if
vitriolic oil is taken very exactly from superfluous water through exhalation,
and the spirit of win4 is conducted through repeated distillations, equal
portions of each are lightly mixed and then you bring near the external small
heat which makes the first of the internal heat motion, this liquor composed
grows very strongly heated. And immediately it establishes a very penetrating
spirit of naphtha, greatly volatile. The thinness of it is significant, for the
specific gravity of this liquid is my second experiment, for the specific
gravity of this to alcoholized spirit of wine is very rightly and truly as 113
to 120. After which this first and on account of various causes the admirable
spirit was called forth, double oil manifests itself, one of which seeks a base
in the spirit, another of which floats upon the spirit and has the manifest
odor of soot. Finally the matter begins to foam in the glass and thus to form
expanded black bubbles, so that unless you moderate the external heat quickly,
the whole mass changes in the vessel and at once a suffocating sulphuric acid
vapor vehemently erupts carrying copious breath. Meanwhile, however, that which
is residual in the alembic or twisted vessel is changed into a true, black,
volatile ash, which if it is separated from the surrounding humid part and is
moderately dried, is similar in all parts to soot, in color, odor,
inflammability.
It was able to be seen that in this experiment the concurrence of an vitriolic acid material in coagulating generates soot.
But truly in all the spirit of wine there is some acid through itself, but
nevertheless it never generates through itself even the least bit of soot.
However, in all oils which can depart into soot lies some acid, but less
abundant. Whence the accession of acid alone in the spirit of
wine is seen not to make soot through itself, but accidentally, namely where it
increases the intrinsic heat of all the liquor.
XCVII.
Therefore
soot is born when water in heat and flaming motion suddenly
59.
constituted is disturbed by this motion. For flame
freely burning destroys water, the same suffocated by any impediment shows
soot. Whence again it is clear that which I have proven above (65, 66, 67),
that solid bodies do not disperse from fluids unless in a direction with a
determined effort. However, water in a constituted flaming motion without doubt
is hotter than the same boiling, and in this case the Amontonian rule is the
necessary exception. However, this heat and flaming motion suddenly suppressed
forms soot from water, thus so that water at a certain degree of heat is made
flame, and in a small degree less of the heat is made soot.
XCVIII.
The dust of the soot is very thin and the
smallest particles of it are not distinguished by the best microscopes. Whence
it probably is that the least particle of soot is not greater than the smallest
particle of water. On the other hand even smaller because the least particles
of oil are smaller than the least parts of water (73) and from these as much as
water soot is generated. Truly because of the blackness you can collect as you
will such particles of soot which are hidden and surrounded within the fiery
atoms.
XCIX.
From the soot of oils, through the spirit of wine adhering from the oil
(90), was purified matter almost indestructible, with
no known periodic division, except with fire. If, however, the fire built up
slowly is increased, truly it releases such an abundance of terrestrial ashes
as much from the oily portion from which the soot arose materially, which no
one has shown to be present.
C.
The nature of the wood coal is the same as
of the soot of oils, especially when the flame of the wood is perpetually
suffocated as when coals are prepared under a hill of earth in the use of metal
products. For placed in a true flame they are never kindled because of the mass
of the earth and because which they retain more water than the coals of
kitchens which are generated by a flame, and also more hard, more nearly
approaching earth and natural mineral, made less of salt and also made greatly
heated they are much praised for cooking. Also from the wood which recently
contained more of water is given better coals.
And it is certain that for different management
of the fire from the same vegetable we are able to produce by incineration now
more now less of fixed earth. That must be known when one wishes to demonstrate
from wood ashes the great amount of earth which is in vegetables, because it is
not yet demonstrated whether all the earth ashes lay in the vegetable before
incineration. Rather, I believe that a great portion of the earth present
should be generated in the fire. For who can show earth in a coal before it is
incinerated?
This Newman sometimes noted in his chemical
commentaries, namely that with a vegetable of the same goodness, by its diverse
treatment it gave a different abundance
60.
of insoluble earth. And also it was known from
coals which are prepared under a hill of earth suffocated by fire that they
exhibit no alkaline salt, whence these coals of wood, which are prepared under
the hearth in free air from green wood especially. A sign of alkaline salt or
an abundance of little ashes is manifest. Wherefore in such a suffocated fire
this is earth itself that is made an alkaline salt in free air. However, we
know that salt and earth do not differ unless by the reason of a greater proximity
with water. For salt (by the teaching of Stahl) is water peculiarly modified. However, it is evident that earth is made from
salt. From culinary salt is generated true sand if phlogiston is connected with
air for a long time, which economics observed in meats and fishes kept in salt
brine for a long time. But now it is also known by physicists. It can be read in
the Commercium Litterarium of
CI.
We have therefore two new methods which nature uses for generating solid
bodies from water. The first namely if water connects with
phlogiston to form oil, finally when it changes this oil into a firm sooty
body. Thus are seen to be born the pollen of plants, sulphur, seeds, and
other bodies, thus the fresh sulphur from mineral and perhaps certain metal. Nor ought we to object that such heat is not in plants as much as
the flame in a lamp. For thus it is argued that nature does not draw
attention to produce its work, in a motion most perfect and insensible. And the
solar rays which are collected through a
convex glass induce just such a stupendous heat in
a moment of time. And they are thus often concentrated on a point in various other
ways by nature and bent inwards so that by man such force is not possibly to be
imitated. We have an example in the attrition of bodies, so that if steel is
rubbed with a stone, immediately there is electricity. However, there is another method, when
nature through the accession of the principle of fire forms salt from water
first and finally this gently goes into the form of earth. Of this natural
conversion therefore an artificial method can be shown with prepared glass. For
it was parched glass from which was made a kind of very hard soap, consisting
from fused liquid earth, and alkaline salt, and phlogiston drawn by fire. This
fixed lye blown by work into bubbles forms a new extension of earth, namely a
kind of glass, from which water bubbles hardly differ unless with a lesser
fragility.
CII.
And these things are less incredible since
in other bodies we have such a frequent similar conversion,
and the repetition of ancient chemistry wherever you wish with liquid and solid
is provided by nature. Truly the instrument of solution and coagulation and
several others is fiery motion applied with a diverse degree. For example, it
is known that lead is a solid body in the heat of our atmosphere, that it
liquefies in a medium fire, and that it is a hard body again in a little
stronger degree of heat, namely as calx of lead. Finally it is changed into rust
of lead and semi-vitreous lithargyrium. Thus the same solid
61.
rust of lead is commuted into a new flow in a kind of fluid glass if the
degree of the fire is again augmented. And thus next, as in lead, various
manner and degree of fluidity and firmness are thickened with varying heat.
Similarly this agrees with the observations of
Glauber and Homberg on mercury, especially however from the long labor
of Boerhaave, that it is a fluid but always fixed in the heat of the
atmosphere. With added heat it transformed exhales vapors. However with
continued and more intense heat it is commuted by fire alone into a solid body
full of dust. This dust, if again the fire is intensified, is again partly made
fluid. Another part is made truly more solid and more fixed, so that it
withstands great fire. It,
nevertheless, finally at the degree of fire which is in the glass of flowing
lead, liquefies again and flies apart. We have described that with admiration
from the most noted experiments of Boerhaave on mercury. From this and other
examples I conclude that it is not improbable that both water which is hard ice
in the winter time and liquefies in the greater summer heat, with increased
heat can once more depart into a dry body and one strongly terrestrial. Whence the conversion of water into earth is seen to be especially
encouraged by the instrument of fire.
However, I think that now it must be refrained from, not that I began to
write in a certain place, but at last interrupted and uncertain, I have no
experiments to add by which I might explain the nature of water, at least none singular
from those which I have already described. When, however, they were imperfect,
I removed them for a scrupulous reason. I shall retain them until I become more
certain. This little bit, however, take, benevolent reader, nor scorn
them.-because they are based on water, a most noteworthy body. For the use of
water lies widely not only in the living bodies of this kingdom, since without
water there is no bodily life, but also in the whole mineral kingdom. Water was referred to as the first
miracle of creation and because of its own simplicity and sufficiency it
especially leads us to the knowledge and veneration of God, the eagerly desired
and most beautiful End of all knowledge.
A VIEW OF THE WHOLE WORK
First Part
In which are recounted briefly the excellent teaching, of old and more
recent about water.
I. The phenomena of simple bodies teaches the
intellect more than those of compositions.
II. In knowing water all sciences are used. Physics and Chemistry
formerly little about water changes for sure.
III. Certain phenomena of water were known by all men
IV. Water was once represented among the elements because of its
simplicity. The Aristotelian hypothesis about the element is praised.
V. The Aristotelian principle is explained, and the qualities of his
primary bodies in recent; and everyday terms are explained. At the same time it
is inquired concerning the absolute lightness of fire in respect to
the center of the earth. The -necessity of
62.
this inquisition is indicated, that if the light fire absolutely
is a false rule, the masses are proportional to the specific gravity.
VI. There are problems of primary bodies in their conversions.
V11 . The experiments of antiquity are reviewed as to whether water can be
changed into air.
VIII. And the objections against the change of Guericke, Boyle,de la Hire.
IX. Water vapors are as elastic as air.
X. When water itself is made least elastic.
XI. Stahl the inventor loves to speak of the elasticity of water. In
what sense it was true.
XII . The contrivance of Amontonius always equals the heat of boiling water.
XIII . About the method and abundance of the exhalations of water.
XIV.The problem is whether water can be converted into fixed earth.
Second Part
It contains observations about the different fixation
of water in
different degrees of heat.
XV. Water in heat which is greater than is required for boiling is fixed, and the more fixed the greater is the degree of heat in it, which is shown with new experiments, especially in the heat of burning iron.
XVI. Each phenomena is again considered.
XVII. In what manner the spirit of wine, behaves it self in the heat of glowing iron.
XVIII.In such heat water gives up fixred earth ,and the spirit of wine gives up soot.
XIX. A new method and the most certain of all for examining the goodness alcohol.
XX. In what manner the spirit of sal-ammoniac behaves itself in the heat of glowing iron.
XXI. And the oil of olives.
XXII. That in such heat the air which is in water is fixed in proportion also.
XXIII No liquids are made fixed in such heat except simple water and air.
XIV. Water is displayed in such heat, not, because of the
absence
of an atmosphere but from the action of the fire itself, to be made more fixed.
XXV. Whence a new
thermometer is proposed for measuring large
degrees of fire, which by an ordinary thermometer cannot be measured.
XXVI. The use of this thermometer is taught by a certain example. Water
in the heat of glowing, iron is three times more fixed than quicksilver.
XXVII. Water in heat which is greater than
of iron is again more volatile and highly elastic.
XXVIII. Earth glowing in fire is not much more hot
than boiling water, wherefore it is never melted. Scores of
iron similarly. The highest heat in the fire is of melted salts.
XXIX. Water in the heat of glowing iron is not hotter even if it is more
fixed.
XXX, XXXI.
Whether part of water through the heat of glowing iron is
changed into fixed earth.
63.
XXXII. A transition is made to the following: whether water in a firm
body is changeable,
unless they are the existence of ice in the first two experiments
tried, one of Boyle, the other of Helmont.
XXXIII. The experiment of Boyle is confirmed.
XXXIV. The objection of Woodward is indicated against the Helmont
experiment.
XXXV. And it is refuted.
THIRD PART.
About the solid state of
water, when bubbles are made from it.
XXXVI. What a bubble is, and from what it is made.
XXXVII. On soap and its varieties.
XXXVIII. About the nature and constitution
of the black soap of Holland certain things
are taught, because of it in concourse large and very beautiful bubbles are
made.
XXXIX. In what manner a bubble is made.
XL. In what manner the phenomena of bubbles
can best be inspected.
XLI. The magnitude
of bubbles varies for the magnitude of the drop from which it is inflated.
XLII. The thickness of the membrane of all bubbles is at least 1/15624
of a Rhine finger.
XLIII. The membrane
of a bubble is a solid body, which is proven by various phenomena. In what
manner smoke is contained in a bubble.
XLIV. The same
membrane is not humid but dry.
XLV. And very
elastic.
XLVI. A bubble at first has a force and struggle f contracting itself,
as long As it is flexible.
XLVII. Finally it is rigid and endures the force and explosive struggle,
so that its particles sudden1y and widely are dispersed from itself in turn.
XLVIII. A bubble in
the same way splits into dust as the tail of a glass tear is broken.
XLIX. Therefore a bubble has a double force opposing itself, namely
centripetal and centrifugal.
L. In which the more saturated is the lye
soap from which the bubble is formed, the greater is the centripetal force in
it. In which the more diluted is the lye, the greater is the centrifugal force
in it.
LI. The centripetal force of the bubble depends
upon oil.
LII. In the membrane of the bubble, oil and water are obviously
separated which were quite mixed before in the lye. From this is the origin of
colors.
LIII. The membrane of a colored bubble consists of three layers. The exterior
colored one oily; the middle white one salty; the inner clear or very black one
is watery.
LIV. The outer layer of the bubble is proven to be oily from phenomena.
LV. This outer layer does not c1incg to the interior ones unless
loosely, and is able to be moved variously over the immovable interior ones.
This one only generates colors.
LVI. That it appears clearer to the naked eye if the membrane of the
bubble is made not spherical but plane.
64.
LVII. If the lye is well mixed, that is, so that the oily parts cannot easily secede from the watery ones,
then the bubble never assembles colors. Wherefore the bubble
from the saliva. of a healthy man has no
colors.
LVIII. Similarly
from urine, and from other well mixed liquids.
LIX. Wherefore in a colder atmosphere the colors appear -more
distinct.
LX: LXI. The Newtonian colors are
not reflected from the whole membrane of the bubble, but from the exterior
sheet of it, by the reckoning of Newton himself it is demonstrated.
LXII. Pure water
lacking all oil never reflects colors, wherefore the
doctrine of Newton about the colors of the thin sheets
must be limited here. But the various refraction of colors in water is proven by the
different colors of ice.
LXIII. The truth of
these observations is asserted.
LXIV. Therefore
water through inflation alone can be changed into a firm, membranous body.
LXV. The true difference
which intercedes between a fluid body and a firm one.
LXV
I. About the plaited
thread of spiders,which in a moment of moment
of time solidifies.
LXVII. Next the difference of fluids and of solids is explained, that in
the test it is melted with the difference only of the particles.
LXVIII. The cause which makes a solid from a fluid is bounded motion.
This cause is either in an intrinsic fluid, or outside that, extrinsic. About the generation
of plants without equivalent seed.
LXIX. Water is the basis of elasticity in the membrane of a bubble.
LXX. And the assertion of Stahl about the elasticity of water is
affirmed and explained.
LXXI. That air is generated from water is made probable by new arguments.
LXXII. From the
measure of the bubble i s proven that one particle of water has a diameter or
1/17577 of a Rhine finger. Wherefore in one Leuwenhoekian globule of blood can
be contained nearly 300 water particles.
LXXIII. The diameter of the least oil particle is to the diameter of a
globule as 1 to 30.
LXIV. That is defended against an objection.
LXXV. Oil is seen
to be water in its least particles broken and wasted by fermentation.
LXVI. Wherefore
water is not an element.
LXXVII. The water
membrane of the bubble has pores of a certain and determined magnitude.
LXXVIII. The
adhesion of the drop to the tube from which it is inflated is the measure of
solidity in the same membrane of the bubble.
LXXIX. All animals and all plants consist from two designs joined in
various orders to themselves, namely tube and vessel. And the matter of them is lye soap. Wherefore Helmont rightly judged all
plants to grow from water ( to which one ought to add
some salt and fat).
LXXX. The usefulness of this doctrine is indicated in physical and
medical theory.
Fourth Part
Of the conversion of water into ash.
65.
LXXXI. Water can burn and glow also when it is not yet turned into
earth.
LXXXIII. LXXXIII. Certain phenomena of flame are shown from oil.
LXXXIV. The moderate and undisturbed flame of oil is all changed into
purest water.
LXXXV. The same flame disturbed is all converted not into water but into
soot,
LXXXVI. During the
ascension of soot no sign of water exha1es from the oil. That in a singular
experiment is taught.
LXXXVII. Water and
soot are the same matter.
LXXXVIII. And the
cause of such mutation is its own marvellous simplicity, indeed the attraction
alone of a hard body.
LXXXIX. Heat or
cold of this hard body is indifferent by reason of the generation of soot.
XC. Soot ascending
adheres to hard bodies easily, and also can so be collected.
XCI. It is inquired
whether soot is generated from air rather than from water, and it is denied
from phenomena.
XCII. Batavian peat
glowing destroys air, nevertheless it does not
generate soot.
XCIII.
Wood coal glowing destroys air, nor does it generate soot.
XCIV. Tallow grease glowing destroys air,
nevertheless in that time it does not make soot.
XCV. The spirit of wine burnt consumes much air nevertheless it does not
put forth any soot.
XCVI. The spirit of wine is changed into soot if a greater degree of
heat is acquired by it.
XCVII. Soot is water of of which the flaming motion is suddenly
suppressed, surrounded
with fiery particles.
XCVIII. The least particles of soot are seen not to be greater than the
least particles of water.
XCIX. Soot is a matter indissoluble by common measures, with the
exception of fire. This treatment yields much earth.
C. The nature of wood coal is almost the same as soot. Coal is not
earth.
CI. From water into earth is a double transition, the first when it is
changed into oil, the other when it is changed into salt.
CII. The conversions of this type of solids into fluids and vice versa also
in other bodies are familiar by a different degree of fire applied, such as in
lead and mercury.
The End.
Set to type by Joan. Sebast. Straube,
typographer to the Academy.